Innovations in 3-Dimensional Neutronics Analysis for Fusion Systems

Paul Wilson

T. Tautges(SNL), M. Sawan, L. El-Guebaly, D. Henderson, G. Sviatoslavsky, B. Kiedrowski, A. Ibrahim, B. Smith, R. Slaybaugh

17th TOFE (2006) 11/14/06

- Motivation & Background
- Tools
 - -Monte Carlo
 - Deterministic
- Applications
- Current issues
 - -Model development
 - -QA & ITER Benchmark

- Reduce impacts of manual conversion of 3-D model data
 - -Time
 - Simplifications
 - Errors
- Extend richness of geometric representation

Monte Carlo Tools FZK (Germany) WISCONSIN MCCAD

- Translator approach
- Production experiences -IFMIF -ITER ECH Port

U. Fischer, et al

4/27

11/14/06

Monte Carlo Tools WISCONSIN TOPACT

Ratheon/LLNL

- Translator approach
- Production experience -NIF "Clamshell"
 - -US ITER TBM

J. Latkowski, et al

U.Wisc/SNL

- Direct use of solid model geometry in MCNPX
 - Use Common Geometry Module (CGM) to interface MCNPX *directly* to CAD & other geometry data

- Production experience
 - -ITER FWS
 - -ARIES-CS
 - -HAPL

Model generated by designers using common tools facilitates analysis

11/14/06

11/14/06

ARIES-CS Tritium Breeding Ratio

 Examine effect of non-uniform blanket and divertor on TBR in real 3-D geometry

Neutron Source Methodology

- Generate hex mesh in real space from uniform mesh in flux coordinate space
- Generate cumulative distribution function for source density in hex mesh
- Sample hex mesh and mesh cells for source position

NWL Maps (colormaps in MW/m²)

HAPL Final Optics

11/14/06

Transpire

- Finite element discrete ordinates
 - Automated tetrahedral mesh generation
- Production experience
 - -ATR
 - Medical phyics facility shielding

G. Failla, et al

ARIES-CS Divertor Duct Shielding

11/14/06

ATTILA Mesh for ARIES-CS WISCONSIN MOCKUP

11/14/06

Duct Shielding Response

11/14/06

CAD Issues Requiring "Repair"

Human effort shifts from traditional MCNP model creation to CAD/Solid Model repair

- Overlapping Volumes (i.e.: clashes)
- Mating surfaces not contacting
- Slight "Misalignment"
 - Imprint generates ultra thin surfaces
 - Doesn't always require repair

Complex Surface Definition

11/14/06

19/27

ITER QA & Neutronics

- Shift to licensing phase of large nuclear system
 - -Need for 3-D analysis
 - -Facilitate analysis with design modifications
 - -Quality assurance of model development

ITER Benchmark

- 802 cells
 - -23 in complement
- 9834 surfaces
 - 397 on reflecting boundary

ITER Benchmark

- Comparing 4 results
 - -Neutron wall loading
 - Divertor fluxes and heating
 - -Magnet heating
 - Midplane port shielding/streaming
- Participants

 UW, FZK, ASIPP,
 JAEA + ATTILA

Neutron Wall Loading : results

11/14/06

Innovations in 3-D Fusion Neutronics

23/27

TF Coils : results

Nuclear Heating (W)

Neutron	Photon	Total
1.39 ± 0.05	17.0 ± 0.6	18.4 ± 0.6
2.47 ± 0.06	29.4 ± 0.6	31.8 ± 0.7
3.82 ± 0.04	44.6 ± 0.4	48.4 ± 0.5
5.41 ± 0.05	60.4 ± 0.6	65.8 ± 0.6
6.03 ± 0.12	65.6 ± 0.9	71.6 ± 1.0
5.16 ± 0.08	57.0 ± 0.7	62.2 ± 0.8
3.38 ± 0.04	40.9 ± 0.5	44.3 ± 0.6
2.27 ± 0.04	29.9 ± 0.5	32.2 ± 0.6
3.66 ± 0.08	45.7 ± 1.3	49.4 ± 1.4
1.88 ± 0.05	24.0 ± 0.7	25.9 ± 0.7
35.5 ± 0.2	415 ± 2.3	450 ± 2.5

11/14/06

Innovations in 3-D Fusion Neutron 8-s1 kW in all TF I/B 12957

Mid-plane Port : results

11/14/06

Innovations in 3-D Fusion Neutronics

25/27

- Advanced tetrahedral mesh tallies
- Coupled deterministic/Monte Carlo
- Coupled activation/photon transport

Questions?

wilsonp@engr.wisc.edu

fti.neep.wisc.edu/ncoe

