

Energy Payback Ratio and CO₂ Emission Associated with Electricity Generation from a Natural Gas Power Plant – *Preliminary Findings*

P. J. Meier and G. L. KulcinskiFusion Technology InstituteUniversity of Wisconsin - Madison

February 3, 2000

Presentation For: Third Annual Energy Research Highlights Forum UW-Madison and Energy Center of Wisconsin Presentation available at http://fti.neep.wisc.edu/FTI/POSTERS

Objective: Net Energy Analysis of electricity generation using a modern natural gas power plant, and development of a Greenhouse Gas Emission Factor for the lifecycle of the system.

Net Energy Analysis:

- A comparison of the useful energy output of a system, with the total input energy consumed by the system in order to produce useful energy.
- Expressed quantitatively as an Energy Payback Ratio (EPR) which can be compared to alternative technologies.

Greenhouse Gas Emission Factor:

- Expressed in terms of tonnes CO₂ emitted per GW-hour electricity produced.
- Can be compared to alternative technologies.

Lifecycle:

• "Birth to Death" of a system including fuel procurement and transportation, plant structural materials and construction, operation, and decommissioning.

REFERENCE NATURAL GAS PLANT

Operating Assumptions: Gas Turbine ($\eta = 50\%$) Plant Capacity = 80% Gross Electrical Power Output: 450 MW_{e} total from 3 turbines Annual Electrical Energy Output: $11,352,960 \text{ GJ}_{e}$ (3,153 GW_eh) Annual Natural Gas Input = 22,705,920 GJ_{th} (6 x 10⁸ m^{3*})

*1020 BTU/ft³ (38 MJ/m³)

NET ENERGY ANALYSIS NATURAL GAS TURBINE ELECTRICITY GENERATION

FUEL RELATED AMORTIZATION PROCEDURE "Paying for the Pipeline"

Reference Plant Fraction:

Reference Plant Fuel Consumption: 6.10 x 10⁸ m³/year

Total US Pipeline Natural Gas Delivered*: 5.35 x 10¹¹ m³/year *EIA-0131(97): 1997, Excludes Exports, Imports, & Additions to Storage

Reference Plant Fraction: 6.10 x 10⁸ / 5.35 x 10¹¹ = 0.114%

Example Calculation for Energy Associated with Natural Gas Pipeline:

FUEL RELATED ENERGY INPUTS TO REFERENCE NATURAL GAS PLANT

(includes exploration, production, processing, transmission, etc.)

Materials

•Drilling equipment, wells, processing equipment, pipeline, compressors, measuring and regulating equipment, housing

<u>Labor</u>

•Installation

•Engineering & Administration

Operation & Maintenance

<u>Fuel</u>

•Natural gas used for drilling, heating, dehydrators, field & transmission compressors

Maximum Energy Payback Ratio (EPR) for natural gas is limited by the fuel used in production, processing, & transmission

*Accounting for fuel consumed in production, processing and transmission, and plant efficiency only.

ENERGY INPUT DATA TABLE Input (GJ) per Year of Reference Plant Operation

PROCESS	GJ _{th} / Calendar Year
Natural Gas Production Equipment (Installed)	6,889
Natural Gas Production O&M - Fuel	1,424,632
Natural Gas Production O&M - Labor	7,417
Natural Gas Storage and Processing Equipment (Installed)	19,652
Natural Gas Storage and Processing O&M - Fuel	Included with Production
Natural Gas Storage and Processing O&M - Labor	32,205
Natural Gas Transmission Equipment (Installed)	92,574
Natural Gas Transmission Production O&M - Fuel	917,471
Natural Gas Transmission Production O&M - Labor	14,897
Power Plant Materials*	11,205
Power Plant Construction*	18,556
Power Plant Operation	211,750
Power Plant Decommission*	5,047
Land Reclamation	111
TOTAL	Preliminary 2,798,780

*Scaled from 1GW Coal Plant

Normalized Energy Investment Comparison*

* Previous Work by: S. White, University of Wisconsin

** Wind analysis excludes storage

Preliminary Energy Payback Ratio for Reference Natural Gas Power Plant

Reference Plant Inputs

(GJ_{th} per calendar year of operation)

Fuel Related: 2,516,000

Construction & Materials: 66,100

Operation: 212,000

Decommission: 5,160

Total: 2,800,000

Reference Plant Output

(GJ_e per calendar year of operation)

Net Electrical Output: 11,350,000

Energy Payback Ratio Comparison to Previous Work*

*Previous Work by: S. White, University of Wisconsin

Greenhouse Gas Emissions Tonne CO₂-equivalent / GW_eh - Preliminary

Greenhouse Gas Emission Comparison

(Tonne CO₂-equivalent / GW_eh)

Coal, Fission, Fusion, Wind data from S. White, University of Wisconsin

Conclusions

- The Energy Payback Ratio for Natural Gas Power Plants is low (4) compared to alternative technologies (11-26).
- The EPR is limited by the use of large quantities of natural gas in the production, processing, and transmission phases of the fuel cycle.
- Our preliminary analysis shows the greenhouse gas emissions (GGE) from natural gas to be 46% of those generated from coal.
- A Recent DOE study* reported GGE from modern gas turbines to be 35-44% of those from conventional coal. Our estimate is slightly above this range, due to the lifecycle analysis of the systems.

*SR/OIAF/98-03