Radiography for a Shock-Accelerated Liquid Layer

MADISON

P. Meekunnasombat, J. G. Oakley, M. H. Anderson and R. Bonazza

University of Wisconsin-Madison Fusion Technology Institute

Background

• Inertial fusion energy (IFE) reactor: strong shock propagating from the center of the chamber towards the walls

• Proposed protection: flowing liquid sheets of molten salt to absorb debris, mechanical and thermal energy from fusion reaction

• At first, model flowing molten salt sheet with stationary layer of water

(easier to handle; scalable)

• Study breakup/fragmentation of shock-accelerated water sheet(s) and their effectiveness in attenuating pressure load

Experimental facility

- 9.2 m long, vertical shock tube
- Square internal cross section, 25 x 25 cm
- Up to Mach 5 into atmospheric air
- Water layer supported in Ar by 1 μ m Mylar film

X-ray diagnostics

- 70 ns X-ray flash
- max photon energy 150 keV
- Carbon fiber windows
- Kodak Lanex fluorescent screen
- 1024 x 1024 pixels CCD camera

Calibration

Calibration cells

X-ray image of three empty cells thicknesses: 25.4 mm, 50.8 mm, 76.2 mm

X-ray image of same three cells filled with water

Useful signal up to 130 mm water (51% volume fraction)

Shock-induced water layer break-up

Radiography for a Shock-Accelerated Liquid Layer

MADISON

P. Meekunnasombat, J. G. Oakley, M. H. Anderson and R. Bonazza

University of Wisconsin-Madison Fusion Technology Institute

Reconstruction of spread-out layer from sequence of X-ray images

Effect of number of layers on break-up

Single layer $z_0 = 12.8 \text{ mm}$ **M=2.13** t=4.93 ms

15

Two layers z_0 =6.4 mm, each 18.3 mm spacing **M=2.12** t=5.18 ms Image: "Middle"

Effect of water layer break-up upon endwall pressure

Endwall pressure, single layer, different shock strengths

Effect of layer spacing		40.0M]
on endwall pressure	-gage]	35.0M - 30.0M -
M=2.12	ure [Pa	25.0M -

