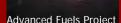


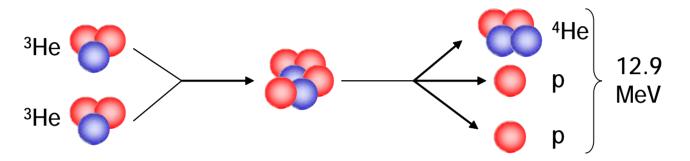
Measurement of ³He(³He,2p) ⁴He Reactions in an IEC Device

Gregory R Piefer—grpiefer@wisc.edu University of Wisconsin—Madison Fusion Technology Institute

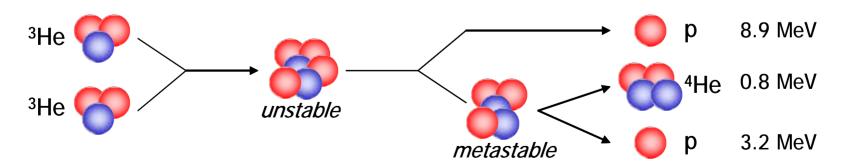

> US-Japan Workshop Argonne National Lab

UW-IEC Laboratory

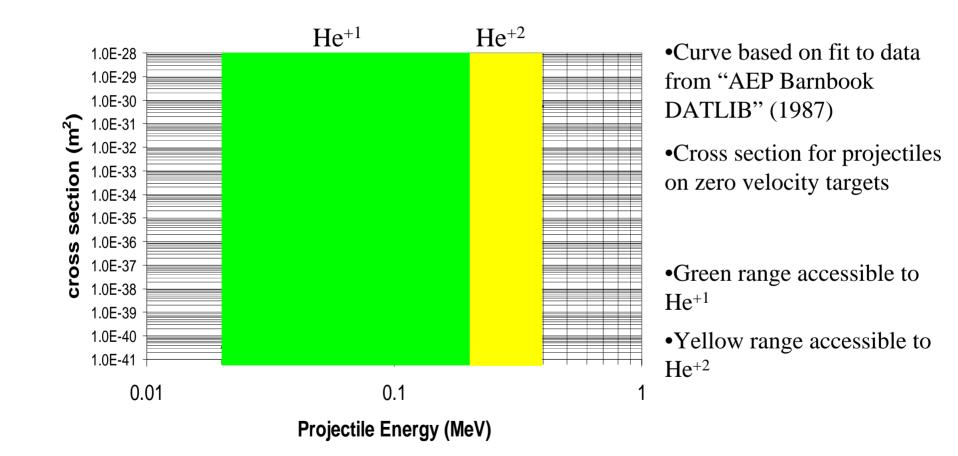
Advanced Fuels Project

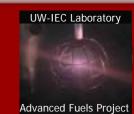


Presentation Overview



- ³He-³He reaction basics
- Benefits of IEC for ³He-³He studies
- Anticipated source regimes
- IEC experimental setup
 - IEC device
 - Ion source
- Results/Conclusions


Most of the time, this reaction is a three body reaction, generating a continuum of particle energies

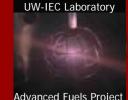

Roughly 10% of the time, a resonance occurs generating a pair of twobody decays, which gives the reaction products discrete energies

³He-³He Cross-Section at IEC Energies

Advanced Fuels Project

IEC Effective for Studying ³He-³He Reactions Below 1 MeV

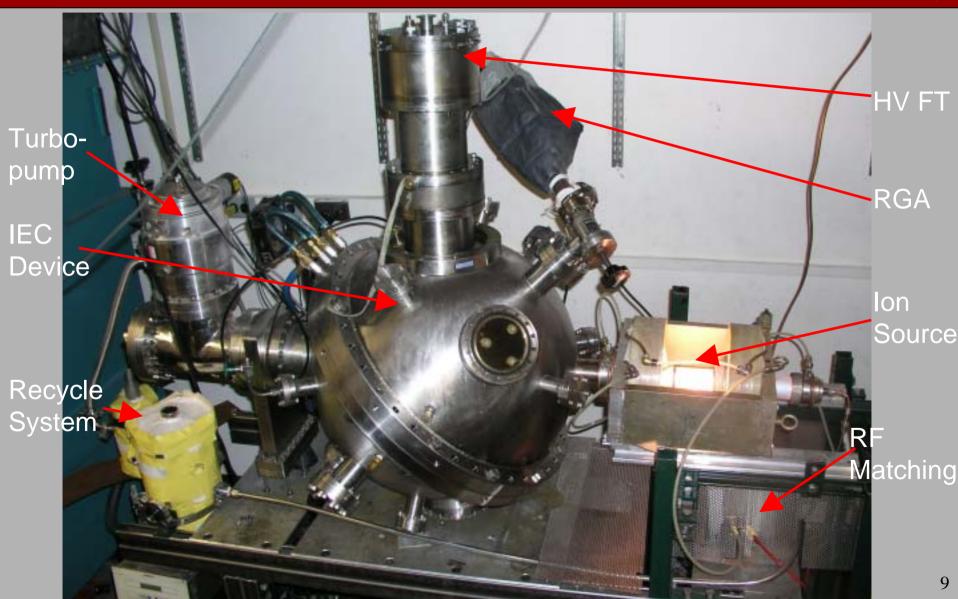
- Accelerators very effective at measuring cross section at energies above 1 MeV
 - Good statistics become difficult as energy is decreased due to limited beam current (< 100 μ A)
- IEC can provide relatively high ion current at lower energies
 - Recirculation allows for ion currents as high as 100 mA or more
 - Cathode voltages from -200 to 0 kV currently available


Reactions in IEC Devices Known to Come From Several Regimes

- Beam-background
 - Primary ions fuse with background neutral gas
- Beam-embedded
 - Primary or secondary ions collide with fuel embedded in grid
- Fast neutral-background
 - Primary or secondary ions that have charge-exchanged and become fast neutrals fuse with background gas
- Converged Core
 - Fast ions collide with other fast ions in device center

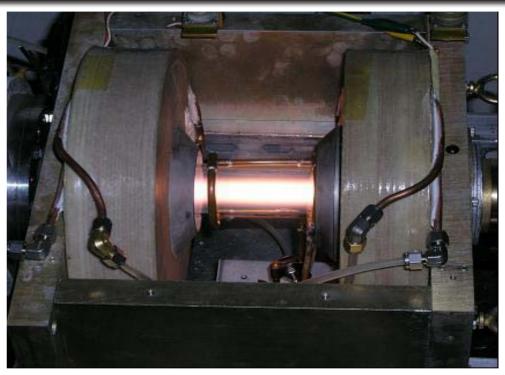
³ He- ³ He Fusion Source Regimes Anticipated to be Similar those for D- ³ He					
Regime	D-D (Exp., 2 mtorr, 100 kV)	D- ³ He (Exp., 2 mtorr, 100 kV)	³ He- ³ He (Theory, 0.2 mtorr, 200 kV)		
Beam-background (near cathode)	22%	5%	7%		
Embedded	8%	95%	93%		
Fast neutral-background + beam- background elsewhere	70%	0%	0%		
Converged core	0%	0%	? But likely very small		

IEC System Specifically Designed for Studying ³He-³He Reactions


- New stainless steel, double walled vacuum chamber
 - Water cooled to allow for long runs
 - Gas recycle system to allow for extended runs
 - Free from D contamination
- High voltage system
 - Current supply capable of 200 kV, 75 mA
 - Buffer circuit design stabilizes operation with plasma
 - Advanced insulator allows long lifetimes
- Helicon ion source
 - Allows for large ion current with minimal gas flow
 - Allows for direct measurement of <u>ion</u> current

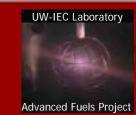
³He-³He IEC System

UW-IEC Laboratory

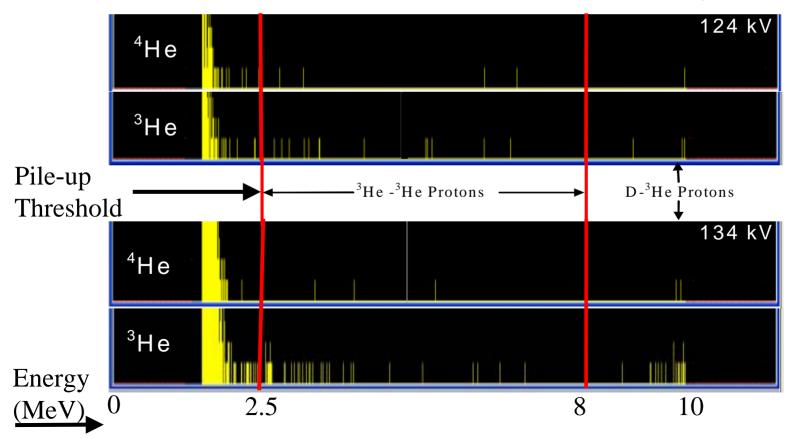

Advanced Fuels Project

Helicon Ion Source Allows Operation in New Regimes

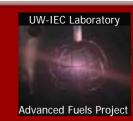
Advanced Fuels Project


- Maximum ion current: 12 mA—independent of IEC conditions
- Minimum reaction chamber pressure at high current: 20 mPa
- Maximum run time: indefinite
- Other characteristics:
 - Max RF Power: 3kW
 - Max B field: 2 kG
 - Approx. Density: $10^{19} / m^3$

- Antenna type: Water cooled Nagoya III
- Antenna coupling: inductive
- Magnet type: water cooled solenoid


IEC Performance has Reached Voltages Necessary for Detection of ³He-³He Reactions

- Maximum voltage achieved: 170 kV
- Maximum sustained voltage (for 900 seconds): 150 kV
- Typical repeatable voltages: 120 kV 140 kV
- About a dozen ³He runs have been done at these conditions, and half of these with direct comparison between ³He and ⁴He fuel
- Typical current ~ 25 mA cathode (~ 7 mA ion current) at 0.03 Pa (200 µtorr) in He gasses
- Noise suppression system eliminates EMP interference reducing background noise by a factor of 50



• 900 second acquisition time; 25 mA cathode; 7 mA source current; runs back to back to ensure similar background data

Observed ³He-³He Reaction Rate is within 50% of Theoretical Estimate

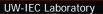
• To improve statistics, all runs added together and averaged

Voltage	Theoretical Beam- Background Rate ¹	Theoretical Detectable Embedded Rate*1	Measured Rate
124 kV	16 ± 5	99 ± 15	144 ± 44
134 kV	31 ± 9	206 ± 30	400 ± 67

- * Detectable rate is one half of actual embedded rate
- ¹ Cross section based on figure in slide 10, with error neglected

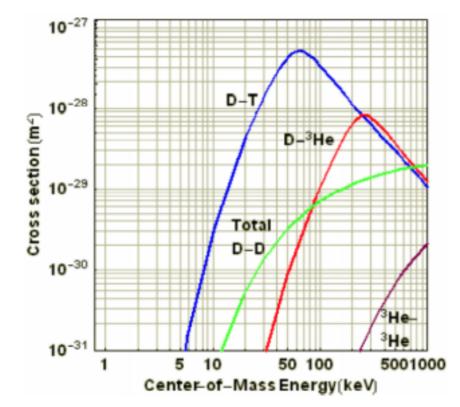
- IEC device constructed that can run steady-state at high power levels
- High voltage components designed that allow operation in He at up to 170 kV, and sustained at 140-150 kV
- High voltage system reliability increased such that component failures have become rare
- Gas recycle system developed to allow for long term operation in ³He gas with minimal gas use

- Ion source developed that allows for IEC operation at much lower pressure than previous devices without sacrificing ion current
- Ion source developed for independent control over source current, which allows for more accurate knowledge of ion current
- Proton detection system noise decreased by 50-100 times
- 3 He- 3 He reactions detected in UW IEC device at an average rate of 400 ± 67 reactions / sec (maximum 600 / sec) at 134 kV



- Actual fusion rate probably higher than detected rate since only half of embedded reactions are counted
- Using the theoretical prediction for the ratio of embedded to beambackground fusion can give an estimate of the true reaction rate

Voltage	Theoretical % of Reactions from Beam-Embedded Fusion	Measured Rate	Inferred Total Fusion Rate
124 kV (ave.)	86%	144 ± 44	268 ± 76
134 kV (ave.)	87%	400 ± 67	748 ± 117
134 kV (max.)	87%	600 ± 89	1122 ± 155


Advanced Fuels Project

Fusion Cross Section Indicates High Energy Needed to Observe ³He(³He,2p)⁴He Reactions

Operation at high cathode voltage and low background pressure required