

Progress in the Development of a ³He Ion Source for IEC Fusion

G.R. Piefer, E.A. Alderson, R.P. Ashley, D.R. Boris, G.A. Emmert, R.C. Giar, G.L. Kulcinski, R.F. Radel, T.E. Radel, J.F. Santarius, A.L. Wehmeyer

US-Japan Workshop on IEC Devices March 14-16, 2005 Los Alamos National Lab Los Alamos, New Mexico

University of Wisconsin--Madison, Fusion Technology Institute

Outline

• ³He-³He Fusion

- Rationale for experiments
- Reaction physics
- IEC beam-background reaction rate estimate
- Detectability
- Ion source development
 - Status as of the last meeting
 - Progress since the last meeting
 - Summary

Purpose of ³He-³He Fusion in an IEC

- Benefits of ³He-³He Fusion
 - No Radioactive fuels or products
 - Possibility of direct energy conversion
 - Minimal or no activation of reactor vessel

Purpose of ³He-³He Fusion in an IEC

- IEC offers some advantages over other research experiments
 - Higher energy capability than MFE or ICF devices
 - Higher current capability than accelerators
 - Allows for study of cross sections where counting statistics are currently poor

Purpose of ³He-³He Fusion in an IEC

• ³He-³He fusion has some significant disadvantages

- Very small cross section at low voltages
- Relatively difficult to obtain fuel in large quantities

³He-³He Fusion Cross Section is Substantially Lower than D-D

³He-³He Reaction has Two Possible Reaction Sequences

The 3-body ³He-³He reaction (~90% of reactions at 190keV CM energy)

•The three body reaction gives a relatively flat continuum of proton energies, which will be difficult to separate from noise

The two 2-body 3He-3He reaction (~10% of reactions at 190keV CM energy)

•The 2-body reaction however, gives discrete proton energies, which will appear as a peak on top of the continuum at 9.3 MeV

Reactivity in IEC will be Modeled as a Monoenergetic Beam-Background Source

- Beam currents low enough so that converged-core reactions are assumed to be insignificant
- Background gas pressure kept low enough such that ion charge exchange time is long compared to ion lifetime
- Model assumes proton detector observes reactions only inside of the cathode

Setup for ³He-³He Experiments

Setup for ³He-³He Experiments

Assumptions for Rate Calculation

- Cathode current ~ 10 mA
- Cathode voltage = 200 kV
 - ³He singly ionized -> Center of mass energy = 200 keV
- Cathode Transparency = 99%
- Average secondary emission coefficient = 2
- Background gas pressure = 0.2 mtorr (27 mPa)
- Cathode/anode radius ratio sufficiently small such that full ion current can be drawn

Fusion Rate can be Calculated from Assumed Parameters

 The fusion rate for a beam-background mono-energetic system can be calculated by the following equation:

$$F = n_b * \frac{I_{cath} * 2R_{cath}}{e(1-\gamma)(1+\sigma_{se})} * \sigma(E)$$

 n_b is the background gas density, I_{cath} is the measured cathode current, R_{cath} is the cathode radius, $\sigma(E)$ is the fusion cross section, e is electron charge, γ is the grid transparency, and σ_{se} is the average secondary emission coefficient

Fusion Rate can be Calculated from Assumed Parameters

 The fusion rate for a beam-background mono-energetic system can be calculated by the following equation:

$$F = n_b * \frac{I_{cath} * 2R_{cath}}{e(1-\gamma)(1+\sigma_{se})} * \sigma(E)$$

 Using existing data for ³He-³He cross sections, this gives a fusion rate of 2*10⁵ fusions/second

- Detector is ~ 50 cm from center of device
 Detector area = 1200 mm²
- The number of detected counts can be expressed as:

$$D = \frac{F}{4\pi R_{\rm det}^2} A_{\rm det}$$

Detection rate ~ 76 counts/sec
If 10% of these are 2-body reactions, the 9.3 MeV peak will have 7.6 counts/sec

Ion Source Status as of Last Workshop— October 2003, Tokyo, Japan

- Helicon source on-line with ⁴He
- 2 mA cathode current observed in main system at modest voltage (~35 kV)
- Extraction system not yet constructed
- Ion current difficult to control
- Helicon fringing fields affected extracted beam

Ion Extraction Region Completed and Operational

New electrode designed to minimize erosion Beam collection plate diagnostic added

Extraction System Tested in ⁴He with Collection Plate

Ion Extraction Current Versus Extraction Voltage Shows Good Current Capability

Ion Current Versus Extraction Voltage (RF Power=60 W)

Stray Fields from Helicon Source Appear to Cause Beam Deflection

New Helicon Magnets are Installed and Now Being Tested

Fringing Fields Shunted Through Magnetic Circuit

Operation at voltages up to 130 kV
Operation at cathode currents up to 10 mA
Operation at pressures as low as 50 µtorr, and as high as 0.5 mtorr

Some Instability in High Voltage Discharges

Conclusions

- IEC experiments looking for ³He-³He fusion reactions are underway
- Good results so far with ⁴He, and some with ³He
- Ion source and IEC operation with source have improved markedly
 - Extraction region online
 - Helicon fringe fields reduced
 - IEC operating voltage up to 130 kV
- Still some problems to overcome
 - HV breakdown at high cathode voltages
 - He beam deflection

Questions?

