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In inertial confinement fusion, shock-driven  hydrodynamic instab-
ilities and the associated mixing impose a limit on the efficiency with 
which fuel material may be compressed to the densities required for 
fusion, reducing the obtainable fusion yield.  These instabilities arise 
at nonuniformities on density and material interfaces, as ablative 
and radiatively-driven shocks pass through the material and 
compress it, as shown below schematically.

In the present work, the phenomenology, mechanisms, and 
spatial and temporal scales of shock-driven instabilities are 
investigated using experiments in a gas shock tube environment, 
along with numerical simulations. In the shock tube environment,
hydrodynamic phenomena may be characterized much more 
precisely than at ICF conditions, due to differences in conditions 
listed in the table above. Further, the absence of electric and 
magnetic fields, phase changes, and radiation allows purely 
hydrodynamic effects to be studied independently. Here, geometric 
length scales of the deformed interfaces are measured as 
indications of shock-induced mixing. 

Computational parameter studyComputational parameter study
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These flows are simulated numerically by integrating the 3D 
Euler equations using a piecewise-linear 2nd-order Godunov method 
with adaptive mesh refinement (AMR).  The code is called Raptor, 
and was developed at LLNL and LBL (see Greenough, et al.).  A 
computational parameter study was performed for shock-bubble 
interactions, with 14 scenarios at 1.14 ≤ M ≤ 5 and -0.76 ≤ A ≤ 0.61. 
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The results above show the growth of the mixed region within the
shocked bubble as a function of dimensionless time, with M and A
as parameters.  This is quantified as ζ, where ζ is the mean volume 
fraction of the ambient gas within the bubble region. These data
show that the intensity and extent of mixing increases with 
increasing values of the Atwood number A, though Mach number 
effects may be scaled out using the post-shock flow speed.
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The evolution of the Richtmyer-Meshkov instability is shown 
schematically above: (a) initial configuration just prior to shock,  (b) 
linear growth regime, (c) start of nonlinear growth, (d) appearance 
of mushroom structures, and (e) turbulent mixing.

Below are images generated using planar laser diagnostics (PLIF 
or Mie scattering) from shock tube experiments studying the 
Richtmyer-Meshkov instability for a 2D sinusoidal interface between 
nitrogen (with flow tracer) above and SF6 below.
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The evolution of a helium bubble of initial radius R during and after 
acceleration by a planar shock wave in air is shown schematically 
above: (a) initial configuration; (b) compression and rotation induced 
by shock passage; (c) deformation and vortex ring formation.
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Shock-driven hydrodynamic instabilities are present in accelerated inhomogeneous flows. Vorticity is deposited on density interfaces by 
baroclinicity , causing interfaces to become unstable and deform. The geometric features of the deformed interfaces and mixing 
zones in two particular shock-driven flows are studied here: the Richtmyer-Meshkov instability of a planar interface with a small-amplitude 
sinusoidal perturbation, and the interaction of a planar shock wave with a discrete spherical bubble. 
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Top: experimental shock tube images obtained using laser light scattered at the bubble  
midplane for a helium bubble shocked at M = 2.95. Bottom: results from 3D Eulerian 
AMR simulations: density (left) and vorticity magnitude (right) at bubble midplane.

Below: late-time experimental and numerical images showing multiple vortex rings and 
complex structure. Left: helium volume fraction ( f ); right: 
vorticity magnitude (ω).
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Late-time images for varying Mach number.
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Results from simulations with 
Raptor (2D) are also shown 
above, At left, the dimension-
less amplitude η of the interface 
(excluding wall effects) from 
simulations and experiments at 
various shock strengths (M) is 
plotted on a dimensionless 
timescale, with analytical model 
predictions.
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