

Summary

Abstract

ncluded in the DRACO Lagrangian hydrodynamics code f laser driven ablation, shocks, and fluid instabilities in low-Z reported (Fatenejad and Moses, Bull. APS <u>51</u>, 209 (2006)), DRACO now includes 3D laser ray tracing to model laser absorption and hydrodynamic restoring forces to counteract artificial grid distortions. Two temperature (electron and ion) flux-limited thermal transport has been included. DRACO is now being used to model the acceleration of a slab of Cu-doped Be into liquid deuterium via laser ablation. The slab has single mode perturbations imposed on it both at the ablation from and at the D-Be interface. Preliminary simulations of fluid instability growth will be presented using the improved DRACO 3D modeling. These simulations are motivated by similar recent experiments performed at the OMEGA laser facility.

Summary of Results

Fluid Instability Simulations

- The evolution of a Richtmyer-Meshkov instability is shown in 3D
- Multiple re-shock Richtmyer-Meshkov instability growth is shown
- 3D and 2D versions of the code and show good agreement at early times when the growth is linear

Code Development

- Features have been added to the thermal diffusion, Lagrangian hydrodynamics, and rezoning in 3D
- Refractive laser ray-tracing has been added to 3D
- Results of simulations validate 3D DRACO against 2D

Future Work

Simulation of Experiments

- Simulate the acceleration of a Cu doped Be slab via laser ablation
- Simulate the deceleration of Be slab by impact with a fixed slab of liquid D₂
- These simulations are designed to study instability growth for NIF target

Code Development

- Add 3D radiation transport using multi-group flux-limited diffusion
- Parallelize the 3D code to decrease simulation run time

Work Supported By: University of Rochester, Laboratory for Laser Energetics

Decelerating ICF targets are subject to the **Richtmyer-Meshkov instability**

- The deceleration phase of the implosion is initiated when the combined shock passes through the origin and impacts the inward moving shell¹
- The shock continues to reflect between the origin and the shell, impulsively decelerating the target
- The increasing pressure of the material interior to the shell causes continuous deceleration of the target

3D DRACO shows agreement with the morphology of Li and Zang²

• Different initial conditions were used preventing exact agreement; future simulations will have exact agreement Agreement was obtained at early times with analytic RM growth rate

DRACO Development for Modeling 3D Instabilities

Milad Fatenejad¹, Timothy Collins², Gregory Moses¹, Radha Bahukutumbi², Patrick McKenty², John Marozas², Vladimir Smalyuk² ¹ Fusion Technology Institute, University of Wisconsin – Madison; ² Laboratory for Laser Energetics, University of Rochester November 12 – November 16, 2007 APS – DPP Meeting Orlando, FL

3D Richtmyer Meshkov Simulations

- Direct-drive ICF target implosions are driven by two main shocks, timed to meet interior to the shell
- Each shock/shell interaction causes growth of modulations on the inner edge of the shell via the Richtmyer-Meshkov instability

¹R. Betti *et al., Phys. Plasmas* <u>8,</u> 5257 (2001)

An ICF target is decelerated impulsively by multiple shock reflections

A 3D Richtmyer-Meshkov (RM) simulation demonstrates agreement with 2D early in time

• 2D DRACO has been benchmarked against other codes

- Shock (M = 1.3) passes from right to left through a perturbed interface with: $\gamma = 5/3, A_{t} = 0.753, \lambda = 5 \ \mu m, a_{0} = 0.2 \ \mu m$
- 2D and 3D results diverge late in time due to greater surface area in 3D

3D DRACO Density Iso-Surface

Li and Zang Iso-Surface

²X. L. LI, Q. Zang, *Phys. Fluids, <u>9</u>*, 3069 (1997)

A shock-tube simulation is used to study the effect of multiple shocks on RM instability growth

- Shock reflects off fixed boundary at x = 0
- All other parameters identical to no re-shock simulation
- Multiple shocks cause the perturbation amplitude to increase

Conclusions

Simulations show 3D DRACO can be used to model **Richtmyer-Meshkov Instabilities**

- RM instabilities are relevant in ICF target implosions
- At early times, the 3D and 2D amplitudes agree • 3D results diverge at late times due to greater surface area
- Re-shock case confirms that successive shocks increase the growth rate
- Agreement is obtained with analytic growth rate at early times Qualitative agreement is obtained with Li and Zang

3D Code Development Additional restoring forces and rezoning options Additional features have been added to the 3D have been added to the 3D Hydrodynamics thermal diffusion Two temperature, flux-limited thermal transport is an important effect in laser **Artificial Grid Distortions** driven ICF • 3D DRACO can now fully implicitly solve the two temperature thermal diffusion aspect ratios can prematurely terminate Lagrangian fluid dynamics calculations equations shown below • An additional artificial restoring forced based on tetrahedralizing the 3D $\rho C_{\nu, \text{ion}} \frac{\partial T_{\text{ion}}}{\partial t} = \nabla \cdot K_{\text{ion}} \nabla T_{\text{ion}} + \rho \frac{C_{\nu, \text{ele}}}{\tau_{\text{oi}}} (T_{\text{ele}} - T_{\text{ion}}) , \quad \rho C_{\nu, \text{ele}} \frac{\partial T_{\text{ele}}}{\partial t} = \nabla \cdot K_{\text{ele}} \nabla T_{\text{ele}} + \rho \frac{C_{\nu, \text{ele}}}{\tau_{\text{oi}}} (T_{\text{ion}} - T_{\text{ele}})$ Lagrangian cell has been added to alleviate this problem⁴ Additional rezoning options have been added to • Two types of flux-limiters (min/max and harmonic) have been added and are shown below. The gradient is computed in a manner consistent with the Rezoning differencing of the diffusion operator³ • Additional rezoning options have been added to 3D DRACO to allow direct $K_{harmonic} = \frac{1}{1 + \nabla T} , \quad K_{min/max} = \min\left(K, \frac{fl}{\nabla T}\right) , \quad fl_{ion} = \left(\frac{K_B T_{ion}}{m_{ion}}\right)^{3/2} \rho , \quad fl_{ele} = \frac{\left(K_B T_{ele}\right)^{3/2} \bar{z} \rho}{\sqrt{m_{ele}} m_{ion}}$ comparison of and validation against results in 2D. ³L. Stein et al., Comput. Methods Appl. Mech. Eng. <u>11</u>, 57 (1977) ^₄M. Wilkins*, J. Comp. Phys. <u>36</u>,* 281 (1980) Preliminary simulations involving laser ray-tracing, The 3D thermal diffusion routines have been tested hydrodynamics and thermal transport agree with 2D against 2D on non-orthogonal grids The simulation was run using two temperatures A step discontinuity in temperature was allowed to diffuse • A planar target was accelerated using a laser energy dump at critical density 1-Temperature, flux-limiter thermal transport was used 100 b Initial Mesh/Temperature Distribution T = 1.0 eV T = 2.0 eV2D Results --3D Results --2D Electron Temperatures 3D Electron Temperatures 0.005 0.01 0.015 0.02 Depth Into Slab (cn -2 0 2 4 6 8 10 12 14 16 **χ (μm)**

Refractive laser ray trace is being implemented in **DRACO** for 3D planar geometry

- A 3D refractive ray trace is necessary for realistic simulation of experiments in planar geometry
- The ray trace is based on Kaiser's method⁵:
- Fit a linear profile to the electron number density n within each cell (not continuous at faces)
- Take a single step across the cell using dt = ds / (cn):

$$\Delta t = \vec{v}_0 - \frac{c^2}{2n_c} (\vec{\nabla} n_e) \Delta t \quad , \quad \vec{x} (\Delta t) = \vec{x}_0 + \vec{v}_0 \Delta t - \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{x}_0 + \vec{v}_0 \Delta t - \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{v}_0 + \vec{v}_0 \Delta t - \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{v}_0 + \vec{v}_0 \Delta t - \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{v}_0 + \vec{v}_0 \Delta t - \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{v}_0 + \vec{v}_0 \Delta t - \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{v}_0 + \vec{v}_0 \Delta t - \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{v}_0 + \vec{v}_0 \Delta t - \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{v}_0 + \vec{v}_0 \Delta t - \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{v}_0 + \vec{v}_0 \Delta t - \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{v}_0 + \vec{v}_0 \Delta t + \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t + \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t = \vec{v}_0 + \vec{v}_0 \Delta t + \frac{c^2}{4n_c} (\vec{\nabla} n_e) \Delta t + \frac{c^2}{4$$

where *c* is the speed of light, *s* the arc length, *v*_a the group velocity, *x*_a the ray path and *n_c* the critical density

Snell's law refraction is used at the boundaries

⁵T. B. Kaiser, *Phys. Rev. E*, 61, 895 (2000)

 $(\Delta t)^2$

- Artificial grid distortions such as 2dx instabilities that occur when zones have high

Ray launching algorithm and boundary conditions are chosen to model laser-driven planar targets

• The ray trace has been calibrated vs. analytic solutions to the geometrical-optics equations

• "Wrapping" boundary conditions are used since the simulation size is much smaller than the laser spot size