

Summary

Abstract

advancements have been made to the DRACO Lagrangian radiationcode. First, the 3D hydrodynamics module has been validated using alytic formulas; second, we have added implicit Monte Carlo (IMC) radiation transport in 2D *r*-z geometry. New results validate simulations of the growth of 3D Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities via comparisons with theoretical growth rates and 2D calculations. The IMC code is validated using comparisons with diffusion theory and analytic results. Finally, comparison of a 2D symmetric direct drive target implosion using IMC to an identical simulation using no radiation transport and diffusion theory will be presented.

Work Supported By: University of Rochester, Laboratory for Laser Energetics

We would like to thank Todd Urbatsch and Jeff Densmore at LANL for their useful discussions

IMC has been implemented in DRACO and validated against several results

- DRACO now includes an IMC model in 2D x-y and r-z geometries
- This model has been validated against flux-limited diffusion theory and the Su and Olson analytic benchmark problem
- Symmetric target implosion simulations agreed with diffusion theory
- Future work will investigate
- The validity of IMC when zones are optically thick
- Variance reduction techniques to allow better accuracy with fewer Monte Carlo particles

The 3D Hydrodynamics code has been validated against theoretical results

- Two slabs at different temperatures/densities were impacted against one another
- This led to the growth of RM and RT instabilities
- The 3D growth rates agreed with 2D and analytic results in the linear regime
- The 3D version of DRACO is now being used to model OMEGA experiments [See TJB Collins (CO 5.0002)]
- 3D Non-linear Rayleigh-Taylor bubble competition will be investigated in the future

equilibrium (LTE)

The stability constraint is removed by introducing a fictitious scattering term

- densitv
- the scattering fraction

Addition of Implicit Monte Carlo Radiation Transport and Validation of 3D Hydrodynamics in DRACO

Milad Fatenejad ¹, Gregory Moses ¹, Timothy Collins ², Patrick McKenty²

¹Fusion Technology Institute, University of Wisconsin – Madison; ²Laboratory for Laser Energetics, University of Rochester

Implicit Monte Carlo Radiation Transport

Implicit Monte Carlo Radiation Transport¹ (IMC) has been added to DRACO

• Radiative heat transfer can play an important role in direct-drive ICF • Early in the implosion, the corona re-radiates energy absorbed by the

For ignition targets, the hot spot reaches temperatures in excess of 10 keV • DRACO models radiative heat-transfer by numerically solving the timedependent, radiative-transfer equations for a plasma in local thermodynamic

 $\frac{1}{2} \frac{\partial I(r, \Omega, \nu, t)}{\partial t} + \Omega \cdot \nabla I + \sigma I = \frac{c}{t} \sigma B(\nu, T)$ $\frac{\partial u_e(r,t)}{\partial t} = \iint \sigma I \mathrm{d}\nu \mathrm{d}\Omega - c \int \sigma B \mathrm{d}\nu$

• Previously, only a multi-group, flux-limited diffusion model was available • IMC was implemented as an alternative that can be used to validate the diffusion results

¹Fleck and Cummings, JCP <u>8</u>, 313 (1971)

IMC has several advantages over traditional Monte Carlo methods

- Monte Carlo methods transport photons across a spatial domain by continuous absorption and re-emission of the
- Older Monte Carlo methods are ill suited for solving timedependent, radiative-transfer problems in ICF where materials can be optically thick and close to equilibrium
- In this case, the absorption/re-emission of photons occurs on time-scales much shorter than hydrodynamic time-scales
- Stability requirements then drive the simulation to small time-steps

 $-\frac{1}{\Omega \cdot} + \hat{\Omega} \cdot \nabla I + \sigma I = \frac{cb_{\nu}}{4\pi} \sigma_a u_r^n + \frac{b_{\nu}\sigma_s}{4\pi\sigma_p} \iint d\nu d\hat{\Omega} I$ The radiation intensity equation is solved using a standard Monte Carlo method which includes scattering $T_e^{n+1} = T_e^n + \frac{f}{c} \left(E/V - c\sigma_p \Delta t u_r^n \right)$ • The plasma energy equation is advanced on each time-step $\sigma_a = f\sigma,$ $\sigma_s = (1 - f)\sigma$ • α is the implicitness factor. This method is stable for $\frac{1}{2} \leq \alpha \leq 1$ $f = \frac{1}{1 + c\sigma_p \alpha \beta \Delta t}$ u is the electron energy density $u_r = aT^4$ u, is the equilibrium radiation energy $\beta = -$ f is the fraction of absorption, 1-f is

The IMC method obtains excellent agreement with an analytic solution¹

- Su and Olson generated a frequency dependent, transient, transport solution to the radiative transfer uations in one dimension
- In order to obtain a tractable problem, the equations must be linear, which requires that $c_{\mu} = \alpha T^3$, and use of a novel "picket-fence" opacity

¹Su and Olson, JQSRT <u>62</u>, 279-302 (1999).

IMC has also been compared to the flux-limited diffusion model in DRACO

- Relaxation of a non-uniform temperature profile was simulated
- The simulation was stopped before a steady state solution was reached and the results of diffusion and IMC were compared
- Agreement was very good for problems with optically thin zones

IMC supports Planck-weighted, multi-group opacities

- These opacities are necessary to directly compare IMC radiation transport to diffusion in target implosions
- The Planck averaged opacity, σ_{n} , weighted over the entire spectrum was computed using tabulated opacities

$$\sigma_p = \int_0^\infty \sigma_\nu(\nu) b(\nu) d\nu$$
$$\sigma_\nu^g = \frac{\int_{\nu_g}^{\nu_{g+1}} \sigma_\nu(\nu) B(\nu) d\nu}{\int_{\nu_g}^{\nu_{g+1}} B(\nu) d\nu}$$

Determination of initial photon frequency requires a cumulative distribution function (CDF)

$$CDF(\nu) = \frac{\int_{0}^{\nu} \sigma_{\nu}(\nu) B(\nu) d\nu}{\int_{0}^{\infty} \sigma_{\nu}(\nu) B(\nu) d\nu} \longrightarrow CDF_{k} = \frac{\sum_{g=1}^{k-1} \sigma_{\nu}^{g}(P(x_{g+1}) - P(x_{g}))}{\sum_{g=1}^{N} \sigma_{\nu}^{g}(P(x_{g+1}) - P(x_{g}))}$$

$$\sigma_p = \frac{15}{\pi^4} \sum_{g=1}^N \sigma_\nu^g (P(x_{g+1}) - P(x_g))$$
$$P(x) = \int_0^x \frac{x^3}{\exp x - 1} dx , \quad x_g = \frac{h\nu}{kT}$$

A separate IMC time-step has been implemented to allow IMC to run when hydro time-step is small

- Near ignition, the time-step is small (~0.01 ps), and is constrained by the CFL
- If the time-step is too small, IMC will consume all available memory
- The IMC code can automatically run on a longer time-step when the hydro step falls below a specified value

IMC has been used to model a symmetric, directdrive ignition target implosion

IMC has also been used to model a symmetric, OMEGA-scale, cryogenic target implosion

 Despite general agreement with diffusion there are known problems when IMC is used to model optically thick materials¹

¹Densmore and Larsen, JCP <u>199</u>, 175-204 (2004).

3D Code Validation

The 3D hydrodynamics model has been validated against 2D and theoretical results

- Simulations examined the growth of Richtmyer-Meshkov (RM) and Rayleigh-Taylor instabilities in the linear regime
- Comparison to theoretical and simulations results show excellent agreement ◄ 30 microns

The 3D and 2D amplitudes are equal in the linear regime when the initial amplitudes are the same

- The acceleration leads to a combination of RM and RT growth
- The sudden jumps in velocity are caused by shocks reflecting off the fixed

Comparison to theoretical RT and RM amplitudes shows excellent agreement

