Experimental Behavior of Molten Sn_xLi_y When Impacted by a Vertical Column of Water

> 14th ANS Fusion Topical Meeting Park City, Utah 2000

University of Wisconsin – Madison Department of Engineering Physics

Fusion Technology Institute

Mark H. Anderson Phongsan Meekunnasombat Michael L. Corradini

DOE Contract DE-FG02-96ER54362

Outline

- Description of the preparation of SnLi alloy
- Description of shock tube
- Discussion of experiments
- Results
- Comparison between SnLi and PbLi
- Conclusions

Energy removal and protection with liquid metals

- There are several concepts to use liquid metals as shielding and a medium to remove thermal energy from advanced fusion designs some of the liquid blanket materials in consideration are:
 - Li
 - Flibe
 - $Pb_{83}Li_{17}$
 - $-Sn_{75}Li_{25}$

There are many technical issues that need to be evaluated; one is the possible physical-chemical interaction with water.

Previous studies of liquid metals in this geometry

- Vukovic (1994)
 - Gallium
 - Indium
 - Pb
 - Sn
- Farahani (1995)
 - 6061 al
 - U₃O₈-Al
 - U₃Si₂-Al
- Nelson (1996)
 - Pb
 - Pb(83)Li(17
- Anderson (2000)
 - Sn
 - Sn(75)Li(25)

Manufacturing of kilogram quantities of Sn₇₅Li₂₅

University of Wisconsin – Fusion Technology Institute

- •Purge glove box with Ar
- •Weigh out Sn and Li in the Ar environment to desired mass
- •Melt Sn in reactor and bring to 500 C, well above formation temp of $Sn_{75}Li_{25}$
- •Add Li slowly (exothermic reaction) while stirring
- •Form billets of approximate mass

Preparation of lithium for melting

Preparation of Sn(x)Li(y)

University of Wisconsin – Fusion Technology Institute

Billets prepared for $Sn_{75}Li_{25}$ water interaction study

Core sample of material sent for confirming analysis

Photos of the shock tube

Diaphragm section and melt section.

Liquid Shock tube.

Characteristic pressure and temperature profile

Examples of dynamic pressure plots

PT0 pressure trace for heated crucible (Anderson et al. and Nelson et al.)

PT0 pressure trace of Sn and Pb

PT0 pressure trace for lithium alloys

Debris from Sn and SnLi experiments

Summary of experimental results:

Nelson et al. (1996)	Expt.#	P. Rupture [MPa]	T _{melt} [C]	T _{H20} [C]	Melt Weight [g]	Melt Volume [cm ³]	Lithium [mmoles]	H ₂ Generated [mmoles]	Lithium 1	reacted %
									30 s.	300 s.
Heated empty	B-31- 1	0.951	576	30.7	none	none	0	NA	NA	NA
Pb	B-43- 1	0.917	587	61.1	146.08	12.88	0	NA	NA	NA
PbLi	B-39- 1	1.080	592	27.9	119.57	10.60	120.6	33.7	?	55.9
Anderson et. al.										
Heated empty	A- 0823	0.925	585	30.6	none	none	0	NA	NA	NA
Sn	A- 0824	0.908	579	28.6	90.28	12.35	0	NA	NA	NA
Approx. same volume as B-39-1	A0825	0.964	566	31.1	75.04	11.34	206.7	77.0	36.79	43.7
Approx. same Li moles as B-39-1	A- 0908	0.970	596	32.1	40.41	6.11	119.6	26.4	40.9	44.2

Overall Summary

- Experiments indicate a qualitative similarity between $Pb_{83}Li_{17}$ and $Sn_{75}Li_{25}$
 - The dynamic pressure traces at each location look similar
 - The hydrogen generated and lithium reacted are consistent
- Reaction rate of both alloys shows a marked reduction as compared to pure Li
- Further work is underway to compare the integral energetics and expand the database