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• Inertial Fusion Energy Reactor Concept

• Repetitive Shock Loading of First Wall

• Experimental Model of First Wall

• University of Wisconsin Shock-Tube Laboratory (WiSTL)

• Experimental Discussion

• Numerical Discussion

• Results:  Pressure, Shadowgraph Images, Force Loading
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IFE Reactor Concept

LIBRA-SP concept design for inertial
fusion energy (IFE) reactor. The DT pellet 
is injected from the top and detonated at 
the center of the chamber. The tubes on the 
walls of the chamber carry liquid metal 
to absorb the heat and particles. These 
tubes must also be able to withstand the 
impulsive loading of the shock wave from
the fusion reaction.  
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Concepts for Cooling Tubes

Two designs of the cooling tubes are shown.
One uses a porous wall and the other uses jets
to create a liquid metal sheet. The layout of 
the multi-wall tube bank is shown. 
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Cooling Tubes Modeled as Cylinders
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(Wisconsin shock tube laboratory)

Driver

Diaphragm
Section

Interface
Section

Test Section

First Floor

Basement

Second Floor • Vertical Orientation
• Large Internal Square

Cross-Section (25 cm square)
• Total Length=9.3 m

Driven Length=6.8 m
• Structural Capacity 20 MPa
• Modular Construction
• Combustion Driver
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Test Section Details

Window Installed
Single Cylinder

Installed
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Shadowgraph Imaging
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Nd:YAG, 10ns Pulse Laser (timed from incident shock)
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Experimental setup and pressure transducers
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Flush mounting of pressure transducers
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Density contour plots from the numerical simulation using RAGE compared to 
the experimental shadowgraphs. The times of the numerical simulations are  t=0, 
t=0.03 and t=0.08 ms after a 1.85 Mach shock (in air) makes contact with the cylinder.
The experimental images were taken at a time of t=0, t=0.05 and t=0.09 ms respectively.

Single cylinder data (Issw22, London 1999)
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Shock-tube Experimental Setup

• M≈2.75 Argon

• Helium used as driver
– 20 gage steel diaphragm

– Prupture≈1.8 MPa

• Wall mounted pressure transducers to 
measure shock speed and trigger laser pulse

• Digital oscilloscopes record pressure data
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Shock Time Series (Numerical)

Shock travels downward 
resulting in complex 
diffraction patterns

Times Between 
Frames≈18 µs (Length 
of Animation is 270 µs)

http://fti.neep.wisc.edu/FTI/POSTERS/anim.html
Unknown
( click to play movie )
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Experimental Result

Shock diffraction
pattern at timage≈99 µs,
as measure from 
incident shock location
at top of upper cylinder

A. Reflected shocks from upper 
cylinders

B. Reflected shock off lower 
cylinder

C. Contact discontinuities
D. Transmitted shock
E. Gradients due to wall interactions
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Diffraction Patterns

timage≈191 µstimage≈77 µstimage≈36 µs
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Numerical Model

• Exact Riemann solver at cell interfaces, Godunov integration method

• Time dependent, two-dimensional, inviscid Euler equations

• Cartesian grid

• Adaptive time step (based on maximum wave speed)

• 25.4 cm square domain, grid 1018x1018, 0.25 mm spatial resolution

• Boundary conditions:  reflective EW (shock tube walls) and 
extrapolate NS

• Initial conditions:  top 5 cm is shocked Argon (M=2.75), rest of
domain is Argon at STP

• Cylinders modeled as circles with reflective boundaries
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Upper Cylinder Pressure Results
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Lower Cylinder Pressure Results
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Force on single cylinder
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Vertical Force on Cylinders
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• Cooling tube model arrangement 
successfully shock loaded

• Second series of tubes see higher structural 
loading

• Numerical results similar to experimental

• Study other tube arrangements and 
protection mechanisms




