Experimental Study of a Strongly Shocked Gas Interface with Visualized Initial Conditions

8th International Workshop on the Physics of Compressible Turbulent Mixing California Institute of Technology, Pasadena, California, USA, Dec. 9-14, 2001

Mark Anderson, Jason Oakley, Bhalchandra Puranik, Riccardo Bonazza

> Department of Engineering Physics University of Wisconsin – Madison

Fusion Technology Institute
UW- MadisonWisconsin Institute of Nuclear SystemsUW- MadisonNuclear Engr & Engr Physics, University of Wisconsin - Madison

Outline

- University of Wisconsin Shock-Tube Laboratory (WiSTL)
- Interface preparation
- Shocked interfaces
- Comparisons with non-linear theories
- Conclusions

 Fusion Technology Institute
 Wisconsin Institute of Nuclear Systems

 UW- Madison
 Nuclear Engr & Engr Physics, University of Wisconsin - Madison

WiSTL (Wisconsin Shock Tube Laboratory)

Fusion Technology Institute
UW- MadisonWisconsin Institute of Nuclear SystemsUW- MadisonNuclear Engr & Engr Physics, University of Wisconsin - Madison

Interface Preparation

- · Use of a retractable metal plate formed into a sinusoidal shape
- Copper plate, 0.6 mm thick
- Plastic deformation by rolling operation
- Sine wave parameters:
 - Amplitude = 3.18 mm
 - Wavelength = 38.1 mm
 - $\eta_0 / \lambda = 0.083$

Rollers Fusion Technology Institute UW- Madison

Wisconsin Institute of Nuclear Systems Nuclear Engr & Engr Physics, University of Wisconsin - Madison

Experiment

- $P_{\text{initial}} = 1 \text{ atm}, T_{\text{initial}} = 298 \text{ K}$
- Ar-ion laser (a) λ =514 and 488 nm, CW
- Planar Mie scattering visualization
- CCD camera: 256 x 256 pixel array, 8 bit/pixel
- Two-stage retraction ($\tau_1 \sim 250 \text{ ms}, \tau_2 \sim 80 \text{ ms}$)

Fusion Technology Institute **UW-** Madison Nuclear Engr & Engr Physics, University of Wisconsin - Madison

Wisconsin Institute of Nuclear Systems

RT Unstable Interface (CO₂/Air)

Fusion Technology Institute

Wisconsin Institute of Nuclear Systems Nuclear Engr & Engr Physics, University of Wisconsin - Madison

6

Desired τ_{RT} <120 ms for RM Initial Condition

R-M instability visualization results

• CO_2/Air , $A_{post} = 0.246$, $A_{pre} = 0.206$

•Very early interaction of the M=3.06 shock wave with the sinusoidal interface

• Development of phase reversal (heavy/light configuration)

- (a): Pre-shocked interface (Note the location of peaks and troughs)
- (b): Shocked interface $\sim 5~\mu s$ after initial shock acceleration
- (c): Shocked interface ~ 36 μ s after initial shock acceleration
- (d): Shocked interface ~ 39 μs after initial shock acceleration

 Fusion Technology Institute
 Wisconsin Institute of Nuclear Systems

 UW- Madison
 Nuclear Engr & Engr Physics, University of Wisconsin - Madison

R-M instability visualization results (Cont'd)

1.80 ms

2.1 ms

- Evolution of interface growth for the same nominal initial condition.
- Each image was taken in a separate experiment with a M~3.06 shock.
- Initial condition inferred from time of shock interaction and RT experiments.

Fusion Technology Institute
UW- MadisonWisco
Nuclear

Wisconsin Institute of Nuclear Systems Nuclear Engr & Engr Physics, University of Wisconsin - Madison

Experiments: Image Analysis

- Images
 - Initial condition: 3 peaks, 2 troughs
 - Shocked image: 1-4 peaks, 1-3 troughs
 - Median filter
 - Excess noise and 3D effects (flow into plane of laser sheet) removed in driven and test gases manually
 - Convert to black and white, then apply Sobel operator to detect edge

• Perturbation amplitude:

$$\eta = \frac{1}{2} \left(\overline{P}_{PIX} - \overline{V}_{PIX} - 1 \right) P_{DIM}$$

$$\overline{P}_{DIM} = \frac{1}{2} \left(\overline{P}_{PIX} - \overline{V}_{PIX} - 1 \right) P_{DIM}$$

 P_{PIX} = average pixel row number of perturbation peaks \overline{V}_{PIX} = average pixel row number of perturbation valleys P_{DIM} = pixel dimension (mm/pixel)

- Error less than 2 pixels: 0.8 mm for initial condition, 0.4 mm for shocked interface
- One image for each tube location for each campaign is presented

Fusion Technology Institute
UW- MadisonWisconsin Institute of Nuclear SystemsUW- MadisonNuclear Engr & Engr Physics, University of Wisconsin - Madison

WiSTI

Richtmyer (1960) impulsive model: $\eta(t) = k[u_p]A\eta_0 t$

Sadot *et al.* (1998) nonlinear theory: $\left(\frac{d\eta}{dt}\right) = \left(\frac{d\eta}{dt}\right)_{UN} \left(\frac{1+Bt}{1+Dt+Et^2}\right)$

$$D_{b/s} = \left(1 \pm A'\right) \left(\frac{d\eta}{dt}\right)_{imp} k \qquad E_{b/s} = \left[\left(1 \pm A'\right)/\left(1 + A'\right)\right] \times \left(1/2\pi C\right) \left(\frac{d\eta}{dt}\right)_{imp}^2 k^2$$

 $C = 1/2\pi$ for low A'

Zhang and Sohn (1997) nonlinear theory: (dn)

$$\left(\frac{d\eta}{dt}\right)_{total} = \frac{\left(\frac{d\eta}{dt}\right)_{lin}}{1 + \left(\frac{d\eta}{dt}\right)_{lin}} \eta_0' k^2 t + \max\left\{0, \eta_0'^2 k^2 - A'^2 + 1/2\right\} \left(\frac{d\eta}{dt}\right)_{lin}^2 k^2 t^2$$
sion Technology Institute
Wisconsin Institute of Nuclear Systems
Nuclear Engr & Engr Physics, University of Wisconsin - Madison

- Comparison with prediction from nonlinear theories shows qualitative agreement
 - - Sadot et al. theory overpredicts at late times
 - $-\cdots$ Zhang and Sohn theory underpredicts at all times

Experiment: Combined Imaging Setup

- •Incident shock wave: M=2.90, in CO₂
- $P_{\text{initial}} = 1 \text{ atm}, T_{\text{initial}} = 300 \text{ K}$
- •Post-shock A'=0.245 (A=0.206, $A=(\rho_1-\rho_2)/(\rho_1+\rho_2)$)
- •Planar Mie scattering visualization, smoke particles
- •Two-stage retraction ($\tau_1 \sim 250 \text{ ms}, \tau_2 \sim 80 \text{ ms}$)
- •Interface section
 - Ar+ laser @ λ =488 nm, continuous wave
 - CCD camera, 256 x 256 pixel array, 8 bit/pixel, framing @ 100 fps
- •Test section
 - Nd:YAG laser @ λ =532 nm, 10 ns pulse
 - CCD camera: 1024 x 1024 pixel array, 16 bit/pixel, one shocked image per experiment

Fusion Technology Institute
UW- MadisonWisconsin Institute of Nuclear SystemsNuclear Engr & Engr Physics, University of Wisconsin - Madison

Experiment: CO₂-air *M*=2.90

Experiment 322 x = 0.457 m $\eta_{IC} = 4.64 \text{ mm}$ $\eta_{RM} = 13.83 \text{ mm}$ $\tau_{RM} = 0.70 \text{ ms}$

Experiment 351 x = 0.756 m $\eta_{IC} = 5.90 \text{ mm}$ $\eta_{RM} = 12.3 \text{ mm}$ $\tau_{RM} = 1.13 \text{ ms}$

- Experiment 363 x = 0.987 m $\eta_{IC} = 7.81 \text{ mm}$ $\eta_{RM} = 28.0 \text{ mm}$ $\tau_{RM} = 1.57 \text{ ms}$
- Initial condition well into nonlinear regime $(\eta_0/\lambda > 0.2)$
- Phase inversion of shocked interface

 Fusion Technology Institute
 Wisconsin Institute of Nuclear Systems

 UW- Madison
 Nuclear Engr & Engr Physics, University of Wisconsin - Madison

WiSTL

15

Comparison with Theories

Comparison with prediction from theories shows qualitative agreement and experimental data bounded by the linear (upper) and nonlinear theories (lower)

Fusion Technology Institute
UW- MadisonWisconsin Institute of Nuclear Systems
Nuclear Engr & Engr Physics, University of Wisconsin - Madison

WiSTL

Lower Mach # Experiment: CO_2 -air M=1.41

A=0.2061, A=0.2242, A13003 0.508 mm diaphragm

Experiment 327 x = 0.457 m $\eta_{IC} = 6.12 \text{ mm}$ $\eta_{RM} = 25.3 \text{ mm}$ $\tau_{RM} = 2.60 \text{ ms}$

Experiment 343 x = 0.756 m $\eta_{IC} = 5.45 \text{ mm}$ $\eta_{RM} = 23.0 \text{ mm}$ $\tau_{RM} = 3.97 \text{ ms}$

UW- Madison

Fusion Technology Institute Wisconsin Institute of Nuclear Systems Nuclear Engr & Engr Physics, University of Wisconsin - Madison WiSTL

- Two dimensional gas-gas interface without a membrane
- Strongly shocked interface (CO_2 -air, M up to 3.06)
- Initial condition geometry imaged for each experiment
- Scatter in data attributed to extreme sensitivity to initial conditions
- Results are similar to existing linear theories
- Needed improvements
 - Better retraction mechanism for more repeatable initial condition
 - Diagnostic upgrade to obtain more than one shocked image per experiment

Fusion Technology Institute
UW- MadisonWisconsin Institute of Nuclear SystemsUW- MadisonNuclear Engr & Engr Physics, University of Wisconsin - Madison

WiSTI

Magnified image of one peak from test 327, the scale above the instability is in inches.

Fusion Technology Institute Wiscons *UW- Madison* Nuclear End

Wisconsin Institute of Nuclear Systems Nuclear Engr & Engr Physics, University of Wisconsin - Madison

