Updated Tritium Breeding Requirement in Fusion Nuclear Science Facility (FNSF)

Mohamed Sawan University of Wisconsin-Madison Mohamed Abdou UCLA

With input from Scott Willms-LANL

FNST Meeting at UCLA August 18-20, 2009

Objective

- Determine the required TBR in the FNSF as a function of fusion power and available external tritium supply
- TBR determined for three options
 - Required FNSF TBR to ensure it does not run out of tritium fuel during its lifetime
 - Required FNSF TBR to ensure that 5 kg of tritium is available at end of ITER and FNSF operation for startup of DEMO
 - Required FNSF TBR to ensure that 10 kg of tritium is available at end of ITER and FNSF operation for startup of DEMO
- Assume that ITER has priority over FNSF for using external tritium supply from CANDU reactors

Projected World-Wide CANDU Tritium (from Scott Willms, LANL)

Initial ITER Schedule

	First Plasma		Fu cui and	Full field, current, O and H/CD Li		Short perating DT icense burn	Q = 10 Q = 10 500 MW 400 s	Q = 10 500 MW 400 s	Full non-inductive current drive			
	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	T	2036
Inte Com PLASMA PERFOR	grated nmissioning AND MANCE No Plasma	Comn with p Heatin Refer	nission ma blasma. ng and CD ence scena Plasma	chine Expts. rrios in H.	Reference scenaric Short D D Plasm	ce os in D. T burn na	Develop f Develop r aimed at Low duty DT Plas	lull DT high non-inducti Q = 5.	iQ. Ir ive H	nprove op ligh duty.	eration.	
Equivaler nominal l	nt accumulai burn pulses	ted			1	750	1750	3250	5750	8750		
		Syste	em checko	ut	Characte	risation		Perform	ance Test			
TESTING		Electromagnetics. Hydraulics. Effect of ferritic steel.			Neutronics. Validate breeding performance.		Short-term T breeding. Thermo-mechanics. Preliminary high grade heat generation.			On-line tritium recovery. High grade heat generation. Possible small-scale electricity generation.		

External Tritium Supply Available for FNSF (from Scott Willms, LANL)

THE UNIVERSITY

ISCONSIN M A D I S O N

Assumptions:

- 2016 ITER start with 2021 DT
- 2 kg working inventory that builds up over 2 years prior to DT
- At end of 20 ITER operation half of working inventory lost to waste

FNSF Assumptions

- > 2021 FNSF start (same time as DT start in ITER)
- ➤ 1 year HH followed by 1 year DD operation
- S years DT operation at 10% availability followed by 10 years DT operation at 30% availability
- Fusion power in the range 50-400 MW considered
- A tritium inventory is maintained at all time during DT operation to cover hold-up in chamber components, tritium processing system, and needed reserve
- This working inventory is assumed to be 0.4 kg at 100 MW fusion power (scaling from ITER)
- Working inventory scales linearly with fusion power and builds up over the 2 years preceding DT operation
- At end of 15 year FNSF operation half of the working inventory is lost to waste with the rest added to supply available for DEMO
- Tritium burn rate is 55.6 kg/GWy
- Tritium decays at rate of 5.5% per year

Total External Tritium Supply Required by FNSF (to cover burn, inventory, decay) Has Strong Dependence on TBR and P_f

Tritium Inventory Available for DEMO at End of ITER and FNSF Operation Depends Strongly on TBR in FNSF

THE UNIVERSITY

Required TBR in FNSF

Current ITER Schedule

Start of DT operation delayed by 5 years

Expected External Tritium Supply Available for FNSF with Current ITER Schedule

Tritium Inventory Available for DEMO at End of ITER and FNSF Operation Reduced with Delayed ITER and FNSF

Required TBR in FNSF is Higher with Delayed ITER and FNSF

Conclusions

- With the limited external supply and taking into account the initial ITER operating schedule (2016 start), any next step FNSF should provide significant part of its tritium need
- With available external tritium supply, a small fusion power and a modest TBR are required for FNSF to have enough tritium for its operation
- Another part of FNSF mission is to provide the initial tritium inventory needed for startup of DEMO. This increases the required TBR in FNSF. Incremental TBR required to provide a startup tritium inventory for DEMO is larger for low fusion power FNSF and large initial startup inventory for DEMO (significantly greater than 5 kg)
 - To achieve this mission, FNSF can have a TBR that increases with time with possible extension of its operation at a higher TBR
- With the current ITER start delay almost all tritium supply will be used by ITER and FNSF has to be self-sufficient in tritium in addition to providing initial startup inventory for DEMO

