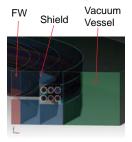
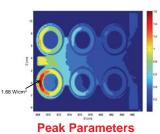

NUCLEAR ANALYSIS OF ITER IN-VESSEL COILS


T.D. Bohm and M.E. Sawan Fusion Technology Institute, University of Wisconsin-Madison

ITER In-Vessel Coils

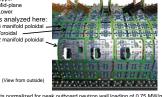

IVCs used in ITER to provide control of Edge Localized Modes (ELMs) in addition to providing control of moderately unstable resistive wall modes (RWMs) and vertical stability (VS) of plasma

Toroidal Leg

Nuclear Heating (W/cm³)

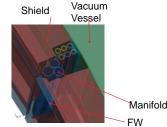
Spinel insulator Fast fluence=2.77e20 n/cm Dose rate=203 Gv/s SS case: He prod. =4.68 appm Cu conductor Heating=1.59 W/cm² Cu dpa=0.259

Peak Cu Resistivity Increase

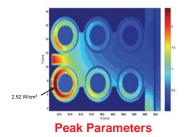

Increase in electrical resistivity of copper results from displacement damage (production of defects and dislocations) and solute transmutation products _{cu}~16 nΩm at 293K

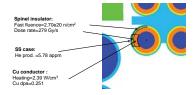
 At high doses, the displacement damage component approaches rapidly a constant saturation value due to displacement cascade overlap effects with a saturation value of 1-4

nΩm depending on purity and Cu alloy • Expected only to be a second order consideration since most effects could be annealed by baking out at 200-300° C • Transmutation products are Ni, Zn, Co that build up as impurities with time resulting in changing conductor resistivity

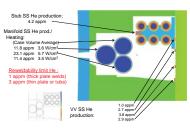

	Transmutation rate (appm/ dga)	Solute resistivity (µDmlati Frac.)	Resistivity increase for toroidal peak 0.26 dpa (pOm)	lesistivity increase for roloidal peak 0.25 dpa (pQm)
Ni	190	1.12	55.3	53.2
Zn	90	0.3	7.0	6.7
Co	7	6.4	11.6	11.2
Total			73.9	71.1

- ELM coil locations
- Upper
 Mid-plane Lower
- Legs analyzed here:
 3 manifold poloidal
- Toroidal 2 manifold poloidal




tesults normalized for peak outboard neutron wall loading of 0.75 MW/m² Cumulative end-of-life parameters calculated for the 0.3 MWa/m² total average FW fluence (based on 0.56 MW/m² average NWL that corresponds to 0.54 FPY

Poloidal Leg (3 manifolds)

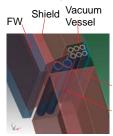


Nuclear Heating (W/cm³)

He Production in SS

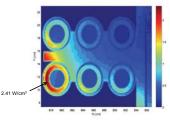
Radiation Effects

- > A good review of radiation limits for normalconducting magnets in fusion environments:
 - erials Considerations for Highly Irradiated Normal-Conducting Ma ns.," J. of Nuclear Materials, vol. 1228/123, pp. 1371-1375 (1984) ter, and S. Zinkle, "Nuclear Features of the Fusion Ignition Rese)," Fusion Engineering & Design, vol. <u>63-64</u>, pp 547 557 (2002).

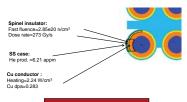

>Main concerns:

 Mechanical and structural degradation in ceramic insulation under long-term neutron fluence. Determined by swelling tolerance. Not issue for compacted powder pradation in ceramic under instantaneous absorbed Resistivity de

- dose rates (n+y) se in Cu conductor due to neutron induced Resistivity incl
- transmutations
- ·Mechanical and structural degradation in Cu (similar to


considerations for ITER FW heat sink). Primary concern is low temperature embrittlement

Poloidal Leg (2 Manifolds)



Manifold Port plug

Nuclear Heating (W/cm³)

Peak Parameters

Conclusions

- > IVCs exposed to severe nuclear environment compared to TEC
- Manifolds and gaps increase nuclear parameters in
- poloidal legs > Cumulative dose in compacted powder ceramic insulator is
- not a concern > Impact of instantaneous dose rate of ~280 Gy/s on
- electrical resistivity of insulator needs to be assessed
- > Modest Cu resistivity increase is expected
- > Low temperature embitterment is a concern for Cu and
- depends on operating temperature and possible annealing > Nuclear heating results should be used as input for thermal
- analysis to determine temperature profiles
- Excessive he production at local spots in VV, manifolds. and coil SS jacket will not allow re-welding