

Development of Nuclear Analysis Predictive Capabilities for Fusion Energy Systems

Mohamed Sawan

P. Wilson, T. Tautges(ANL), L. El-Guebaly, D. Henderson, T. Bohm, G. Sviatoslavsky,
B. Kiedrowski, A. Ibrahim, B. Smith, R. Slaybaugh

> 10th International Conference on Energy and Environment *Luxor, Egypt* March 11-15, 2007

Nuclear Fusion

- Unlike fission where uranium splits generating energy, fusion occurs when two hydrogen nuclei fuse together and release energy
- ≻Two approaches:
 - Magnetic confinement
 - Inertial confinement

D-T Fusion Represents a Nearly Inexhaustible Energy Source

Fuels: Deuterium: abundant in sea water Tritium: Half-life~12 years...must be produced?

Fusion Reactors are Complex with Many Components

03/13/2007

ITER

1st Integrated Fusion Test Reactor

ITER Status

- Agreement signed on November 21, 2006
- Seven parties with more than half of the world population
- Cost ~\$7B
- ITER construction starts in 2007 at Cadarache, France
- First plasma in 2016 and 20 year operation

03/13/2007

10th International Conference on Energy and Environment

Nuclear Analysis is Essential Part of Design

- Energetic 14 MeV neutrons are emitted in plasma and slowed down and absorbed by surrounding components
- Nuclear analysis for components surrounding the plasma is essential element of fusion nuclear technology
 - •Tritium production in breeding blankets to ensure tritium self-sufficiency
 - •Nuclear heating (energy deposition) for thermal analysis and cooling requirement
 - •Radiation damage in structural material and other sensitive components for lifetime assessment
 - •Provide adequate shielding for components (e.g., magnets) and personnel access
 - Activation analysis for safety assessment and radwaste management
- State-of-the-art predictive capabilities (codes and data) are needed to perform required nuclear analyses

Calculation Methods

There are several numerical methods and codes available to solve the Boltzmann transport equation

>The methods can be broken down into two groups

- Deterministic method:

Directly solves the equation using numerical techniques for solving a system of ordinary and partial differential equations

- Statistical based method:

Solves the equation using probabilistic and statistical techniques

Each method has its strengths and weaknesses

Deterministic Approach

The phase space (space, angle, energy) is discretized

<u>Angle</u>

 S_n - Discrete Ordinates P_1 - Moment expansion

Energy

Multi-group (175n-42g)

Spatial discretization

Finite Element (un-structured meshes)

Finite Difference (structured equal fine meshes)

Advantages

- Spatial Resolution
- Flux evaluated at a large number of points

<u>Disadvantages</u>

- Angular Quadrature approximation
- Legendre Polynominal expansion of cross- sections
- Ray-Effects for streaming problem
- Group treatment of energy variable
- Require large storage space for multi-dimensional calculations

<u>Codes</u>

DANTSYS, DOORS. PARTISN code systems (1D, 2D, 3D finite difference) ATTILA (3D finite element with CAD coupling)

Statistical Monte Carlo Approach

<u>Method</u>

- Use probabilistic and statistical approach to solve transport equation
- The particle travel distance and interaction physics are converted to probabilistic and cumulative distributions, that are sampled using a random number

<u>Advantages</u>

- Exact Geometrical representation
- Exact treatment of the transport process
- Exact source-modeling capability
- Continuous (pointwise) energy treatment of the cross-sections

<u>Disadvantages</u>

- Require variance reduction techniques to improve accuracy
- Usually cannot generate accurate results at all locations
- Many particle histories and large CPU time to obtain accurate results

<u>Codes</u>

MCNP, MCNPX, MORSE, TRIPOLI, TART

Activation Codes

<u>Method</u>

Solve rate equations for radioactive nuclide production and decay to determine radioactive inventory, decay heat, biological dose, and radwaste

<u>Codes</u>

ALARA DKR-PULSAR REAC2 RACC FISPACT ORIGN2 ANITA ACAB ACT4

Nuclear Data

Evaluated nuclear data include raw data that needs processing to produce working libraries for use with nuclear analysis codes US: ENDF/B-IV, -V, -VI, -VII ENDF/B-VII released Dec 15, 2006 Japan: JENDL-3.2, JENDL-3.3 EU: JEFF-3.1 RF: BROND-2.1

Processing Codes: NJOY, TRANSX, AMPX

- Process data in either Multi-group or continuous energy format
- In addition to basic transport and scattering cross sections, special reaction cross sections are generated
 - -Kerma factors- for nuclear energy deposition
 - -Damage energy cross sections- for atomic displacement (dpa)
 - -Gas production (tritium, helium, hydrogen)

FENDL-2.1 is Reference International WISCONSIN Fusion Nuclear Data Library

No.	Library	NMAT	Materials
1	ENDF/B-V1.8 (E6)	40	² H, ³ H, ⁴ He, ⁶ Li, ⁷ Li, ⁹ Be, ¹⁰ B, ¹¹ B, ¹⁶ O, ¹⁹ F, ²⁸⁻³⁰ Si, ³¹ P, S, ^{35,37} Cl, K, ^{50,52-54} Cr, ^{54,57,58} Fe, ⁵⁹ Co, ^{61,62,64} Ni, ^{63,65} Cu, ¹⁹⁷ Au, ²⁰⁶⁻²⁰⁸ Pb, ²⁰⁹ Bi, ^{182-184,186} W
2	JENDL-3.3 (J33)	18	1 H, 3 He, 23 Na, $^{46-50}$ Ti, , 35 Mn, $^{92,94-98,100}$ Mo, 181 Ta, V
3	JENDL-3.2 (J32)	3	Mg, Ca, Ga
4	JENDL-FF (JFF)	4	¹² C, ¹⁴ N, Zr, ⁹³ Nb
5	JEFF-3 (EFF) JEFF3	4	²⁷ Al, ⁵⁶ Fe, ⁵⁸ Ni, ⁶⁰ Ni
6	BROND-2,1 (BR2)	2	¹⁵ N, Sn

- Direct use of solid model geometry in MCNP
 - Use Common Geometry Module (CGM) to interface MCNP *directly* to CAD & other geometry data

- Production experience – ARIES-CS
 - HAPL – ITER FWS

- Reduce impacts of manual conversion of 3-D model data
 - -Time
 - Simplifications
 - Errors
- Extend richness of geometric representation

Application to ARIES-CS WISCONSIN Compact Stellarator

- Geometry complex varying in both poloidal and toroidal directions
- Cannot be modeled by standard MCNP

Examined effect of helical geometry and non-uniform blanket and divertor on total TBR and nuclear heating

NWL Maps (colormaps in MW/m²)

HAPL Final Laser Optics

10th International Conference on Energy and Environment

Neutron Flux in Laser Beam Duct

ITER Benchmark

- 40 degree machine sector
- Used for validation of MCNP/CAD tool
- 802 cells
- 9834 surfaces
- 17 material specifications

ITER Benchmark

- Comparing 4 results – Neutron wall loading
 - Divertor fluxes and heating
 - -Magnet heating
 - Midplane port shielding/streaming
- Participants

 UW, FZK, ASIPP, JAEA

Neutron Wall Loading : results

Energy and Environment

TF Coils : results

Nuclear Heating (W)

Neutron	Photon	Total			
1.39 ± 0.05	17.0 ± 0.6	18.4 ± 0.6			
2.47 ± 0.06	29.4 ± 0.6	31.8 ± 0.7			
3.82 ± 0.04	44.6 ± 0.4	48.4 ± 0.5			
5.41 ± 0.05	60.4 ± 0.6	65.8 ± 0.6			
6.03 ± 0.12	65.6 ± 0.9	71.6 ± 1.0			
5.16 ± 0.08	57.0 ± 0.7	62.2 ± 0.8			
3.38 ± 0.04	40.9 ± 0.5	44.3 ± 0.6			
2.27 ± 0.04	29.9 ± 0.5	32.2 ± 0.6			
3.66 ± 0.08	45.7 ± 1.3	49.4 ± 1.4			
1.88 ± 0.05	24.0 ± 0.7	25.9 ± 0.7			
35.5 ± 0.2	415 ± 2.3	450 ± 2.5			

8.1 kW in all TF I/B legs

03/13/2007

Model generated by designers using common tools facilitates analysis

03/13/2007

10th International Conference on Energy and Environment

FWS results

10th International Conference on Energy and Environment

- Nuclear fusion systems are geometrically complex with many components requiring detailed 3-D nuclear analysis
- An innovative calculation method was developed where the 3-D Monte Carlo neutronics calculations are performed directly in the detailed CAD geometrical model
- This eliminates human error, improves accuracy and cuts down turnaround time to accommodate design changes and iterations
- The tool has been successfully tested for an ITER benchmark and applied to perform nuclear analysis for several fusion designs

Questions?

sawan@engr.wisc.edu

