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Background

• The APEX project was initiated to explore innovative concepts for
blankets and other in-vessel components that can tremendously
enhance the potential of fusion as an attractive and competitive
energy source

• These concepts should have high power density handling
capability, high power conversion efficiency, potential to achieve
high availability, and safety and environmental attractiveness

• The EVOLVE (EVaporation Of Lithium and Vapor Extraction)
concept utilizes the extremely high heat of evaporation of lithium to
remove the entire heat deposited in FW/blanket
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Cross-sectional view of the EVOLVE first wall/blanket concept
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Schematic of EVOLVE first wall tubes and blanket trays
containing Li
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Configuration of the EVOLVE Concept
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1-D Scoping Analysis

• Using W structure results in ~10% higher TBR compared to Ta

• A 40-cm-thick secondary breeding blanket utilized in OB side only

• Secondary breeding blanket made of W and self-cooled by Li

• Li enriched to 40% 6Li to maximize TBR

• W structure used in shield with WC shielding material and Li cooling

• Tritium breeding, nuclear heating, and radiation damage in different
components were calculated using 1-D calculations

• Radial build required for VV reweldability and magnet shielding
determined
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2-D Calculational Procedure

• TWODANT module of DANTSYS 3.0 utilized

• The ray tracing first collision source option used

• Both IB and OB regions modeled simultaneously

• Neutron coverage fractions of 75% OB, 15% IB, 10% divertor

• Made conservative assumption of no breeding in divertor region

• Li density in trays and FW is 0.35 g/cm3

• Results normalized to OB and IB wall loadings of 10 and 7 MW/m2
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R-Z Two-Dimensional Model for EVOLVE
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Radial Build Used in Calculations

IB OB
FW 5 cm 5 cm
Li tray 40 cm 50 cm
Back wall of tray 0.5 cm 0.5 cm
Li vapor manifold 15 cm 20 cm
Manifold backplate 1 cm 1 cm
Clearance 2 cm 2 cm
Secondary blanket 0 cm 40 cm
Clearance 0 cm 2 cm
Shield 60 cm 50 cm
Clearance 2 cm 2 cm
VV front sheet 5 cm 5 cm
VV shielding zone 30 cm 30 cm
VV rear sheet 5 cm 5 cm
Total 165.5 cm 212.5 cm



University of
Wisconsin-Madison

University of
Wisconsin-Madison

Secondary Blanket, Shield, and VV Design

• The composition of the secondary blanket is
90% Li, 10% W

• The composition of shield is 20% Li, 10% W,
70% WC

• The VV is 40-cm-thick with a double wall structure
of two SS sheets each 5 cm thick sandwiching a
shielding zone of 80% WC and 20% He
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 Tritium Breeding Ratio in the Reference Design

• Overall TBR is 1.37 without divertor breeding

• 69.8% of breeding in the trays
57.3% OB
12.5% IB

• 27.7% of breeding in OB secondary blanket
20.2% behind trays
7.5% between trays

• 2.5% of breeding in shield
1% OB
1.5% IB

• Tritium breeding has a comfortable margin that gives design flexibility

• Overall TBR from 2-D calculation is slightly higher than that estimated
from 1-D calculations coupled with coverage fractions (1.37 vs. 1.336)
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Nuclear Heating Partitioning in the Reference Design
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• Most of nuclear heating (~72%) deposited in high temperature front blanket

• Adding surface heat deposited in FW implies that ~76% of total IB and OB
energy deposited as high grade heat in FW and trays
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Peak Nuclear Heating Values
• Peak W structure nuclear heating (W/cm3) in blanket and shield components

IB OB
FW 85.0 105.8
Manifold Backplate 33.3 31.3
Secondary Blanket NA 26.2
Shield 20.1 4.3

• No significant poloidal peaking is observed
• Peak heating in the manifold backplate, secondary blanket, and shield is a factor of

3-4 lower than predicted from 1-D calculations
• 1-D calculations were very conservative since the space between FW and secondary

blanket was assumed to be completely empty
• Source is volumetrically distributed with most source neutrons being intercepted by

the FW and trays
• The secondary neutrons and gamma rays which give large contribution to heating

and damage tend to give nearly uniform profiles
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Peak Structure Damage Rate Values

• Peak dpa rate (dpa/FPY) and He production rate (He appm/FPY) in W structure

dpa/FPY He appm/FPY
IB OB IB OB

FW 25.7 34.8 14.0 20.2
Manifold Backplate 7.0 7.0 2.0 2.0
Secondary Blanket NA 6.1 NA 1.8
Shield 4.3 0.74 1.3 0.12

• No significant poloidal peaking is observed

• Peak dpa in manifold backplate, secondary blanket, and shield is factor of ~3-5
lower than predicted from 1-D calculations. He production is factor of ~6-10 lower

• Peak damage rate in OB secondary blanket and IB shield is factor of ~6 lower than
in FW and they are expected to have factor of 6 longer lifetime than the FW and
trays. Lifetime of OB shield is about an order of magnitude longer than for OB
secondary blanket and IB shield making it lifetime component
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Poloidal Damage Distribution Around OB Trays
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• Slight damage peaking occurs in FW in front of trays due to increased reflection

• Damage is nearly poloidally uniform in the secondary blanket and shield



University of
Wisconsin-Madison

University of
Wisconsin-Madison

Poloidal Damage Distribution at Front Surface of OB
Secondary Blanket
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• Negligible damage peaking occurs in the secondary blanket between trays
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Poloidal Distribution of Fast Neutron Flux
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• Largest peaking between trays occurs at the back of the trays and decreases rapidly
as one moves away from them
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Peak VV and Magnet Neutronics Parameters

• 60 cm thick IB shield
• 50 cm thick OB shield
• 40 cm thick VV

Peak VV neutronics parameters
IB OB

Peak Nuclear Heating (mW/cm3) 2.8 2.0
Peak end-of-life dpa 0.08 0.05
Peak end-of-life He appm 0.30 0.21

Peak magnet neutronics parameters
IB OB Design Limit

Peak Nuclear Heating (mW/cm3) 0.039 0.023 1
Peak end-of-life Fast Neutron Fluence (n/cm2) 8.4x1017 5.4x1017 1019

Peak end-of-life Dose to Epoxy Insulator (Rads) 1.0x109 6.4x108 109

Peak end-of-life dpa to Cu Stabilizer 4.8x10-4 2.7x10-4 6x10-3

• All VV and magnet radiation limits are satisfied
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Conclusions
• Adequate tritium breeding is achievable for the EVOLVE concept if

Li is enriched to 40% 6Li and a secondary breeding blanket is used in
OB region

• The overall TBR is 1.37 assuming no breeding in the divertor region

• Surface heat and 72% of nuclear heating are deposited as high-grade
heat in the front evaporation-cooling zone

• No significant peaking in nuclear heating and damage occurs behind
the trays

• OB secondary blanket and IB shield are expected to have a factor of
6 longer lifetime than the FW and trays. The OB shield is expected
to be a lifetime component

• The VV is reweldable and all magnet radiation limits are satisfied




