Nuclear Analysis for a Flowing Li₂O Particulate Blanket Without Structural First Wall

M.E. Sawan, H.Y. Khater, D.-K. Sze

Presented at the 5th International Symposium on Fusion Nuclear Technology,

Rome, Italy, 19-24 September 1999

Background

- The APEX project was initiated to explore innovative concepts for blankets and other in-vessel components that can tremendously enhance the potential of fusion as an attractive and competitive energy source
- These concepts should have high power density handling capability, high power conversion efficiency, potential to achieve high availability, and safety and environmental attractiveness
- An innovative concept utilizes Li₂O granular particulates flowing down the reactor chamber
- This concept is referred to as the APPLE (Advanced Plasma-facing Particulate Li₂O Evaluation) concept

Calculational Procedure

- 5 cm front blanket layer of Li_2O @30% packing fraction
- 0.5 cm SiC separation wall
- Li₂O blanket @60% packing fraction
- Shield consisting of 80% steel and 20% $\rm H_2O$
- VV consists of two SS sheets each 5 cm thick sandwitching a 30-cm-thick shielding zone made of 80% steel and 20% H_2O
- 316SS and LA ferritic steel considered in activation analysis
- 1-D calculations for local nuclear parameters
- Both IB and OB regions modeled simultaneously
- \bullet Results normalized to OB and IB wall loadings of 10 and 7 MW/m^2
- Results coupled with coverage fractions to estimate overall parameters
- Neutron coverage fractions of 75% OB, 15% IB, 10% divertor

- Steel damage and gas production decrease by an order of magnitude in 35 cm
- A minimum blanket (Li₂O @ 60%) thickness of 40 cm is required for the structure to be lifetime component (200 dpa @ 30 FPY)
- A minimum blanket (Li₂O @ 60%) thickness of 145 cm is required in front of the SS VV to be reweldable (1 He appm @ 30 FPY)

Local TBR and M

- Natural Li
- Total blanket thickness:

Outboard	75 cm	(for breeding)
Inboard	40 cm	(for structure shielding)

• Local TBR:

Outboard	1.233
Inboard	1.158

• Local M:

OB 1.099 (3.2% in shield/VV)

IB 1.166 (15.4% in shield/VV)

Estimated Overall TBR and Energy Multiplication

- The local TBR and M values were combined with neutron coverage fractions to determine the overall TBR
- We assume neutron coverage fractions of 75% OB, 15% IB, 10% divertor
- Blanket thickness in divertor region is 40 cm
- Overall TBR is 1.215

76.2%	OB
14.3%	IB
9.5%	Div

• Overall M is 1.116

93.6% deposited as high grade heat in the blanket

Peak Nuclear Heating and Radiation Damage Rate Values in Blanket

• SiC separation wall (not structure member) will require replacement

	IB	OB
Peak Nuclear Heating (W/cm ³)	54.9	75.0
Peak dpa Rate (dpa/FPY)	72.8	93.1
Peak He Prod. Rate (He appm/FPY)	7310	10438

• Steel structure at back of blanket is lifetime component

	IB	OB
Peak Nuclear Heating (W/cm ³)	14.9	4.3
Peak dpa rate (dpa/FPY)	5.54	0.87
Peak end-of-life dpa @ 30 FPY	166.2	25.9
Peak He Prod. Rate (He appm/FPY)	42.6	5.5
Peak end-of-life He appm @ 30 FPY	1277	163

VV and Magnet Shielding

- For reweldability, the peak helium production in the VV should not exceed 1 appm
- Adequate VV shielding is provided using 40 cm SS/H₂O shield behind 75 cm OB blanket 55 cm SS/H₂O shield behind 40 cm IB blanket
- End-of-life insulator dose in superconducting magnet should not exceed 10⁹ Rads
- The 40-cm-thick VV provide additional shielding for the magnets

Peak VV and Magnet Neutronics Parameters

- 55 cm thick IB shield
- 40 cm thick OB shield
- 40 cm thick VV

Peak VV neutronics parameters

	IB	OB
Peak Nuclear Heating (mW/cm ³)	10	11
Peak end-of-life dpa	0.09	0.10
Peak end-of-life He appm	0.40	0.42

Peak magnet neutronics parameters

	IB	OB	Design
			Limit
Peak Nuclear Heating (mW/cm ³)	0.028	0.027	1
Peak end-of-life Fast Neutron Fluence (n/cm ²)	8.5×10^{17}	8.0×10^{17}	10^{19}
Peak end-of-life Dose to Epoxy Insulator (Rads)	8.3x10 ⁸	7.1×10^8	10^{9}
Peak end-of-life dpa to Cu Stabilizer	4.3x10 ⁻⁴	$4x10^{-4}$	6x10 ⁻³

• All VV and magnet radiation limits are satisfied

Recommended Radial Build

• Radial build that satisfies requirements for structure lifetime, VV reweldability, and superconductor magnet shielding is

Outboard: 155 cm total 75 cm Blanket 40 cm shield 40 cm VV

Inboard: 135 cm total 40 cm Blanket, 55 cm shield 40 cm VV

Activation Analysis

- Impact of replacing 316SS (20 appm Nb impurity) by low activation ferritic steel was assessed
- ORNL LAFS 9Cr-2WVTa with 0.5 wppm Nb is considered
- While nearly identical short-term activities are obtained in the two alloys, the long-term activity is reduced by more than two orders of magnitude when the LAFS is used
- The LAFS is used in the reference design

Impact of Particulate Blanket on Structure Activation

- Comparing the structure activity with and without the Li₂O particulate blanket indicates that
 - Short-term activity that affects decay heat and off-site dose from accidental release is reduced by a factor of ~40 due to the attenuation of the neutron flux in the blanket
 - Reduction in long-term activity that affects radwaste classification is not as significant since the structure is used for the whole reactor life (30 FPY) while in a conventional solid wall design, the FW/blanket structure is replaced after ~ 2 FPY

Waste disposal ratings

- Radwaste of different components of APPLE evaluated according to both NRC 10CFR61 and Fetter limits
- Results given for compacted wastes

•	All components v	would qualif	y for	disposal	as low	level	Class C	^C waste
---	------------------	--------------	-------	----------	--------	-------	---------	--------------------

Zone	Lifetime	Class C WDR	Class C WDR
	(FPY)	(Fetter)	(10CFR61)
SiC baffle/separation wall	2	0.275	0.02
IB shield	30	0.648	0.144
IB VV	30	4.54×10^{-3}	1.92x10 ⁴
OB Shield	30	0.46	0.057
OB VV	30	4.39×10^{-3}	1.86x10 ⁴

Summary

- The overall TBR is estimated to be 1.22 and the overall energy multiplication is 1.12
- •93.6% of nuclear heating deposited as high-grade heat in the front particulate blanket
- A minimum blanket thickness of 40 cm required for structure to be lifetime component
- The radial build required for VV reweldability and magnet shielding was determined
- More than an order of magnitude reduction in decay heat and activity results from placing the structure behind the Li_2O particulate blanket
- \bullet Using low activation ferritic steel structure behind the $\rm Li_2O$ particulate blanket allows for near surface burial of the radwaste
- The Li_2O particulate blanket concept without structural FW has the potential for achieving tritium self-sufficiency with lifetime structure and reweldable VV
- It has attractive safety features resulting from the significant reduction in radioactivity and decay heat generation in the structural material

