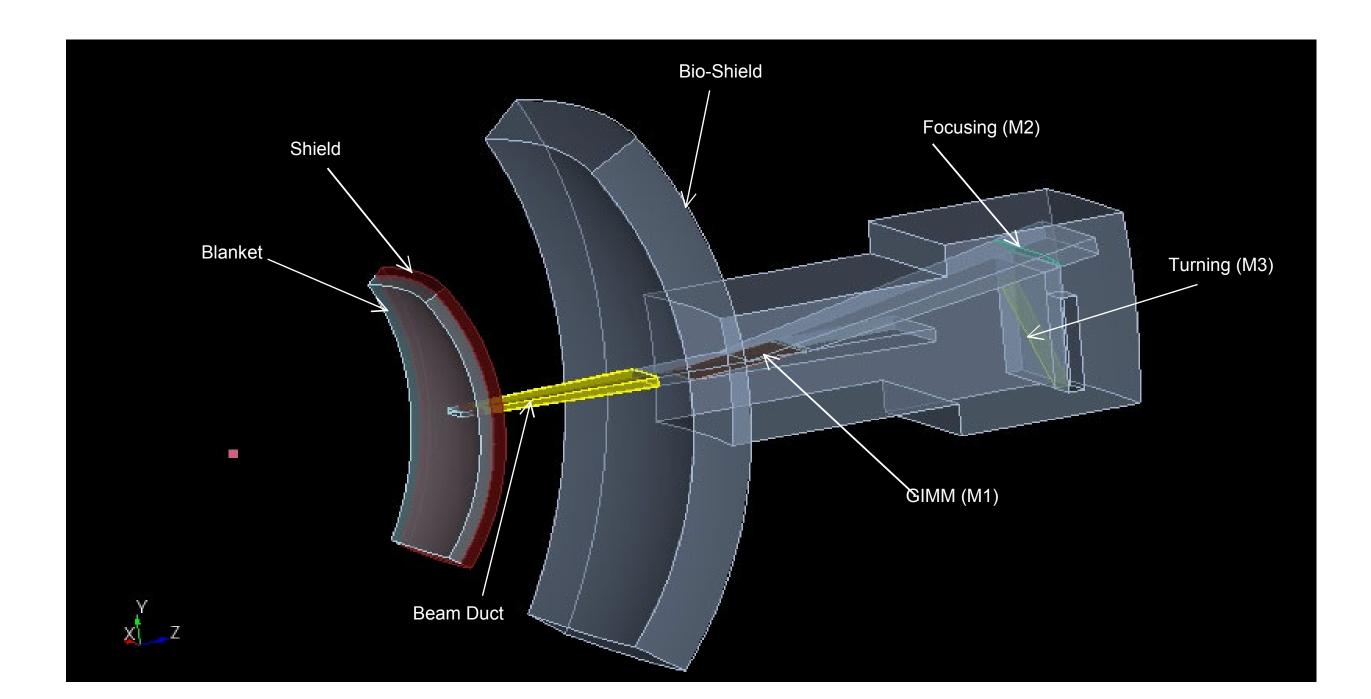


Baseline HAPL Optics Configuration with GIMM

Provided by Malcolm McGeoch

Objectives

Determine nuclear environment at the GIMM (M1), focusing mirror (M2), and turning mirror (M3) final optics of HAPL


Assess impact of GIMM design

Approach

- Used Monte Carlo code MCNPX-CGM with direct neutronics calculations in CAD model
- Continuous energy FENDL-2.1 nuclear data
- Modeled one beam with reflecting boundaries
- Neutron traps used behind GIMM and M2
- Two lightweight GIMM design options considered (SiC, AlBeMet)
- ➤ 1 cm thick Sapphire M2 and M3 mirrors
- Blanket/shield included in model
- Concrete containment building housing optics

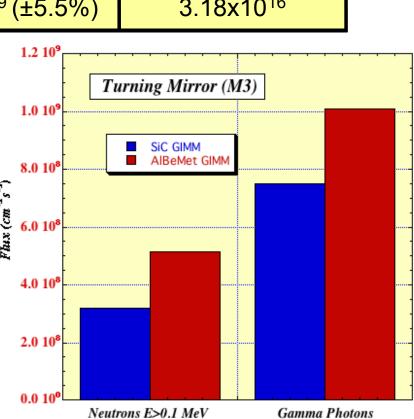
Three-Dimensional Nuclear Analysis for the Final Optics System of HAPL Mohamed Sawan, Ahmad Ibrahim, Tim Bohm, Paul Wilson Fusion Technology Institute - University of Wisconsin, Madison, WI

Geometrical Model Used in 3-D Neutronics Analysis

Flux at Front Faceplate of GIMM

		Flux (cm ⁻² .s ⁻¹)
SiC GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	1.39x10¹³ (±2.1%) 1.43x10 ¹³ (±2.1%) 1.57x10 ¹² (± 5.5%)
AlBeMet GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	1.21x10 ¹³ (±2.1%) 1.30x10 ¹³ (±2.1%) 1.88x10 ¹² (±4.4%)

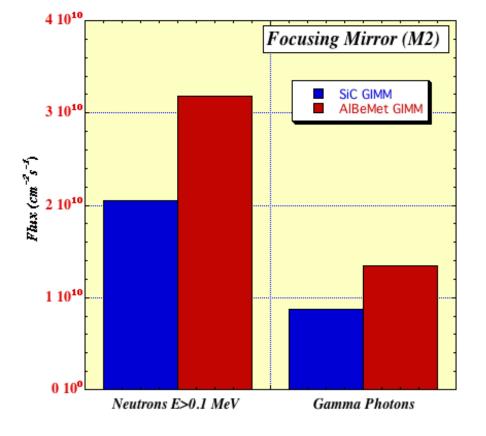
Material choice and thickness slightly impacts peak flux in GIMM Neutron spectrum softer for AIBeMet with 93% >0.1 MeV compared to 97% for SiC


		Peak Flux (cm ⁻² .s ⁻¹)	Peak Fluence per full power year (cm ⁻²)
SiC GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	3.18x10 ⁸ (±7.3%) 8.44x10 ⁸ (±8.2%) 7.51x10 ⁸ (±8.0%)	1.00x10 ¹⁶ 2.66x10 ¹⁶ 2.37x10 ¹⁶
AlBeMet GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	5.14x10 ⁸ (±7.6%) 1.31x10 ⁹ (±8.8%) 1.01x10 ⁹ (±5.5%)	1.62x10¹⁶ 4.13x10 ¹⁶ 3.18x10 ¹⁶
h AlBeMe	a factor of ~1.6 hig t GIMM lux is about two ord	her 1.0 10 ⁹	urning Mirror (M3) SiC GIMM AlBeMet GIMM

magnitude lower than at M2 with

smaller gamma flux reduction

Neutron spectrum is softer with ~40% of neutrons @ E>0.1 MeV

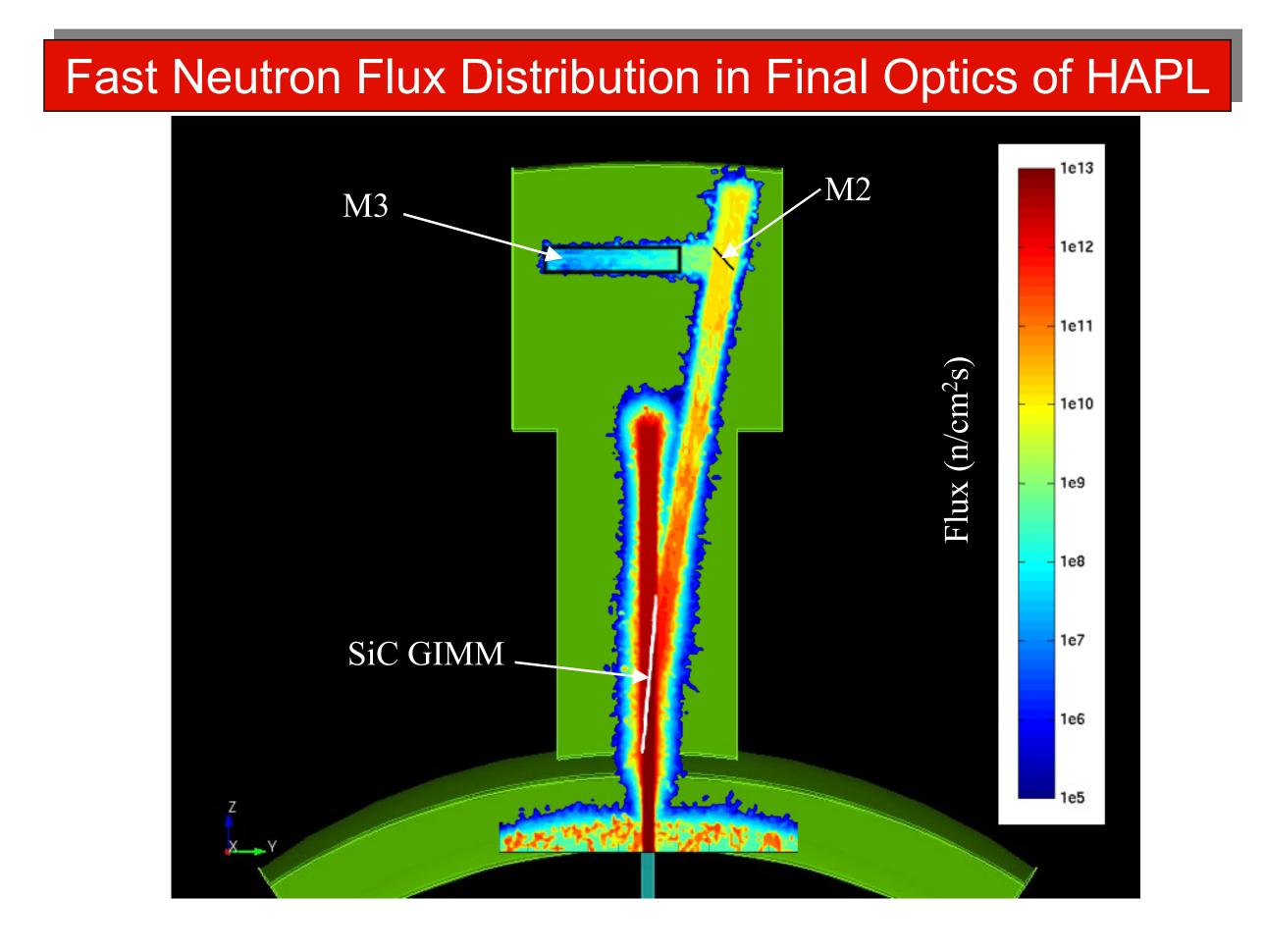

Flux at Focusing Dielectric Mirror M2 Located @14.9 m from GIMM				
		Flux (cm ⁻² .s ⁻¹)	Fluence per full power year (cm ⁻²)	
SiC GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	2.05x10 ¹⁰ (±4.0%) 2.27x10 ¹⁰ (±4.0%) 0.88x10 ¹⁰ (±6.9%)	6.46x10 ¹⁷ 7.15x10 ¹⁷ 2.77x10 ¹⁷	
AlBeMet GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	3.18x10¹⁰ (±3.9%) 3.57x10 ¹⁰ (±3.8%) 1.35x10 ¹⁰ (±5.9%)	1.00x10¹⁸ 1.12x10 ¹⁸ 4.25x10 ¹⁷	

Neutron flux is a factor of ~1.6 higher with AlBeMet GIMM

Total neutron and gamma fluxes are more than two orders of magnitude lower than at GIMM

Neutron spectrum is hard with ~90%

of neutrons @ E>0.1 MeV


Peak Fast (E>0.1 MeV) Neutron Fluence per Full Power Year at Mirrors in Final Optics of HAPL

	Peak Fast Neutron Fluence per FPY (n/cm ²)	
	SiC GIMM	AlBeMet GIMM
MM (M1)	4.38x10 ²⁰ (±2.1%)	3.81x10 ²⁰ (±2.1%)
cusing Mirror (M2)	6.46x10 ¹⁷ (±4.0%)	1.00x10¹⁸ (± 3.9%)
rning Mirror (M3)	1.00x10¹⁶ (±7.3%)	1.62x10 ¹⁶ (±7.6%)

The authors gratefully acknowledge the financial support of the HAPL program at the Naval Research Laboratory.

Findings and Conclusions

➤ 3-D neutronics calculation performed to determine
nuclear environment in the HAPL final optics and
compare impact of possible GIMM design options
Neutron flux at dielectric mirrors is higher by a
factor of ~1.6 with AlBeMet
Neutron spectrum softens significantly at M3
(~40% >0.1 MeV vs. ~90% at M2)
Peak fast (E>0.1 MeV) neutron fluence per FPY:
GIMM 4.4x10 ²⁰ n/cm ²
M2 1.0x10 ¹⁸ n/cm ²
M3 1.6x10 ¹⁶ n/cm ²
Significant drop in nuclear environment occurs as
one moves from the GIMM to dielectric focusing
and turning mirrors
Experimental data on radiation damage to metallic
and dielectric mirrors are essential for accurate
lifetime prediction

> For fluence limits of 10²¹ n/cm² (GIMM) and 10¹⁹ n/cm² (dielectric), expected GIMM lifetime is ~2 FPY, expected M2 lifetime is 10 FPY, and M3 is lifetime component