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Fusion Reactors are Complex with
Many Components
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ITER
1st Integrated Fusion Test Reactor

Divertor

54
cassettes

Central Solenoid
Nb3Sn, 6 modules

Outer Intercoil
Structure

Toroidal Field Coil
Nb3Sn, 18, wedged

Poloidal Field Coil
Nb-Ti, 6

Machine Gravity Supports
(recently remodelled)

Blanket Module
421 modules

Vacuum Vessel
9 sectors

Cryostat
24 m high x 28 m dia.

Port Plug (IC Heating)
6 heating
3 test blankets
2 limiters/RH
rem. diagnostics

Torus Cryopump
8, rearranged
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ITER Status

• Agreement signed on
November 21, 2006

• Seven parties with
more than half of the
world population

• Cost ~$7B
• ITER construction

starts in 2007 at
Cadarache, France

• First plasma in 2016
and 20 year operation

ITER diagnostics landscape
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Nuclear Analysis is Essential Part
of Fusion Reactor Design

• Tritium production in breeding blankets to
ensure tritium self-sufficiency

• Nuclear heating (energy deposition) for
thermal analysis and cooling requirement

• Radiation damage in structural material and
other sensitive components for lifetime
assessment

• Provide adequate shielding for components
(e.g., magnets) and personnel access

• Activation analysis for safety assessment and
radwaste management
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Developed Innovative Computational Tool

MCNP-CGM

• Direct use of solid model geometry in
MCNP
–Use Common Geometry Module (CGM) to

interface MCNP directly to CAD & other
geometry data

CGM
CAD Voxels

MCNP
MCNP
Native

Geometry (Other)

• Production
experience
– ITER Benchmark
– ARIES-CS
– HAPL
– ITER FWS

Ray-tracing acceleration techniques used
allowing for tracking speeds that are within
a factor of 2-3 of the native MCNP
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Motivations

• Reduce impacts of manual conversion of
3-D model data
–Reduce preparation time and allow faster

design iterations
–Avoid need for geometrical simplifications to

2nd order polynomials
–Eliminate possible human errors in modeling

• Extend richness of geometric
representation by preserving geometrical
details
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CAD Issues Requiring “Repair”

• Overlapping Volumes (i.e.: clashes)
• Mating surfaces not contacting
• Slight “Misalignment”

   Human effort shifts from traditional
MCNP model creation to CAD/Solid

Model repair
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Examples of Typical CAD
Issues and Typical Repairs

Action - Volumes  trimmed to
contact only

Issue – Overlapping
Volumes

13th International Conference on13th International Conference on

 - Volumes  trimmed to
contact onlycontact only

Action – Edit geometry to
establish proper contact

Issue – No Contact

Action – MAY require
recreating volume

Edges cross
at this point
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ITER Benchmark

• 40 degree
machine sector

• Used for
validation of
MCNP/CAD tool

• 802 cells
• 9834 surfaces
• 17 material

specifications
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ITER Benchmark

• Comparing 4 results
–Neutron wall loading
–Divertor fluxes and

heating
–Magnet heating
–Midplane port

shielding/streaming
• Participants

–UW, FZK, ASIPP,
JAEA, UCLA
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TF Coils : results

450 ± 2.5415 ± 2.335.5 ± 0.2

25.9 ± 0.7

49.4 ± 1.4

32.2 ± 0.6

44.3 ± 0.6

62.2 ± 0.8

71.6 ± 1.0

65.8 ± 0.6

48.4 ± 0.5

31.8 ± 0.7

18.4 ± 0.6

Total

17.0 ± 0.61.39 ± 0.05

24.0 ± 0.7

45.7 ± 1.3

29.9 ± 0.5

40.9 ± 0.5

57.0 ± 0.7

65.6 ± 0.9

60.4 ± 0.6

44.6 ± 0.4

29.4 ± 0.6

Photon

1.88 ± 0.05

3.66 ± 0.08

2.27 ± 0.04

3.38 ± 0.04

5.16 ± 0.08

6.03 ± 0.12

5.41 ± 0.05

3.82 ± 0.04

2.47 ± 0.06

Neutron

Nuclear Heating per Coil (W)

8.1 kW in all TF I/B legs 
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Application to ARIES-CS
Compact Stellarator

• Geometry complex
• FW shape and

plasma profile vary
toroidally within
each field period

• Cannot be modeled
by standard MCNP

Examined effect of helical geometry and non-
uniform blanket and divertor on NWL
distribution and total TBR and nuclear heating

Thinner blanket region

Divertor
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NWL Maps (colormaps in MW/m2)
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TBR: 3-D Results Differ from 1-D
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HAPL Final Laser Optics

Bio-Shield

Turning (M3)

GIMM (M1)

Beam Duct

Focusing (M2)
Shield

Blanket
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Neutron Flux in Laser Beam Duct
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ITER FWS Module Elements
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ITER First Wall/Shield

Module 13 Mockup

Model generated by designers using 
standard tools (CATIA/CUBIT)

Front Back
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Nuclear responses at reservoir
(11.5 cm from front of FW)
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FWS nuclear heating results
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Conclusions

• Nuclear fusion systems are geometrically complex
with many components requiring detailed 3-D
nuclear analysis

• An innovative calculation method was developed
where the 3-D Monte Carlo neutronics calculations
are performed directly in the detailed CAD
geometrical model

• This eliminates human error, improves accuracy and
cuts down turnaround time to accommodate design
changes and iterations

• The tool has been successfully tested for an ITER
benchmark and applied to perform nuclear analysis
for several fusion designs resulting in high fidelity,
high-resolution results that significantly improve the
design process
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