

OBJECTIVE

Assess impact of shielding configuration options on nuclear environment at final optics

Fast Neutron Flux at Final Optics with Different Shielding Configuration Options

·))	Option I	·) I Option II	 Option III

	Peak Fast Neutron Flux (n/cm ² s)		
	Option I	Option II	Option III
GIMM	1.40x10 ¹³	1.38x10 ¹³	1.37x10 ¹³
Focusing Mirror	2.28x10 ¹⁰	4.27x10 ¹⁰	4.05x10 ¹⁰
Turning Mirror	4.34x10 ⁸	1.13x10 ⁹	1.03x10 ⁹

NUCLEAR ASSESSMENT OF SHIELDING CONFIGURATION OPTIONS FOR FINAL OPTICS OF HAPL LASER FUSION POWER PLANT Mohamed Sawan, Ahmad Ibrahim, Tim Bohm, Paul Wilson Fusion Technology Institute, University of Wisconsin, Madison, WI

Total Gamma Flux at Final Optics with Different Shielding Configuration Options

.)	Option I	·) I	Option III

	Peak Gamma Flux (y/cm²s)		
	Option I	Option II	Option III
GIMM	1.68x10 ¹²	9.93x10 ¹¹	9.48x10 ¹¹
Focusing Mirror	1.33x10 ¹⁰	4.90x10 ¹⁰	4.25x10 ¹⁰
Turning Mirror	8.89x10 ⁸	4.36x10 ⁹	3.50x10 ⁹

Preferred Final Optics Shielding Configuration

Preferred configuration is the original Option I where all optics including the GIMM are enclosed in concrete shield

Results in lowest radiation levels at the dielectric focusing and turning mirrors > Allows for better GIMM support Reduces volume maintained under vacuum Requires the least amount of concrete

Relative amount of concrete: 1, 1.12, and 1.14 for options I, II, and III

Nuclear Heating in Final Optics with Different Shielding Configuration Options

	Peak Nuclear Heating (mW/cm ³)		
	Option I	Option II	Option III
GIMM	610	580	579
Focusing Mirror	1.14	1.84	1.68
Turning Mirror	0.02	0.10	0.07

concrete

Fast Neutron Flux Distribution in Final Optics of HAPL

Option

Option II

Option III

Conclusion

Original shielding configuration with all optics including GIMM enclosed in concrete shield is the preferred option since it yields lowest flux at dielectric mirrors, provides better GIMM support, reduces volume under vacuum, and requires least amount of