Neutronics Assessment of Self-Cooled Li Blanket Concept

Mohamed Sawan

Fusion Technology Institute University of Wisconsin, Madison, WI

With contributions from

I. Sviatoslavsky (UW), A.R. Raffray (UCSD), and X. Wang (UCSD)

HAPL Meeting UCLA
June 2-3, 2004

Basic Assumptions

- ➤ 1 mm W armor on ferritic steel (F82H) FW
- ➤ Used target spectrum from LASNEX results (Perkins) for NRL direct-drive target
- >70.5% of target yield carried by neutrons with 12.4 MeV average energy
- ≥1.8 GW fusion power
- ➤ Chamber radius 6.5 m

Blanket Sub-module at Midplane

Lithium Enrichment

- Enrichment helps shielding more than breeding
- ➤ 30% enrichment saves only ~3 cm in blanket thickness but increases cost of Li by about an order of magnitude
- ➤ TBR maximizes with 20% enrichment but gain is only 2.5%
- ► Natural Li used
- Li enrichment can be used as a knob in design allowing for adjustment of TBR and shielding if needed

Blanket Thickness

Peak radiation damage rate in FS structure at midplane (2.4 MW/m²)

	FW	Vacuum Chamber
dpa/FPY	19.15	4.87
He appm/FPY	184.4	27.2

- ➤ Minimum blanket thickness required is 47 cm for vacuum chamber to be lifetime component
- ➤ Lifetime of blanket is ~10 FPY

Radiation damage and gas production in W armor 6.2 dpa/FPY
4.8 He appm/FPY

- ➤ Atomic displacement on sides of W/FS interface differ by a factor of 3
- ➤ Helium production on sides of W/FS interface differ by a factor of 38

Tritium Breeding Requirement

- ➤ Overall TBR required >1.1
- Local TBR calculated at midplane with 47 cm blanket and FS shield cooled with 15% Li
- Steel and W in the side walls of blanket sub-modules accounted for in calculations by adding 4.2% FS and 0.77% W in the Li zones

Local TBR at midplane

Blanket 1.134
Shield 0.073
Total 1.207

- Moving away from midplane towards top and bottom of chamber blanket thickness increases but blanket sub-module width decreases resulting in increased volume fraction of side walls
- Calculations performed to determine local TBR as a function of elevation above midplane

- ➤ Average local TBR in side region of chamber is 1.212
- If no breeding blankets are utilized in top and bottom regions overall TBR will be 1.137
 Solid angle fraction subtended by beam ports is ~0.4% with minimal impact on overall TBR

We have the option of designing Li cooled blankets/shields with small Li content at top and bottom and using He-cooled vacuum chamber

Tritium Breeding for Reference Design

- ➤ Lithium content in top/bottom blanket is 20%
- ➤ While side blanket thickness at midplane of 47 cm is required to make VV lifetime component, top/bottom blanket thickness required is only 30 cm
- > 50 cm thick SS VV used with 15% helium cooling

Overall TBR = 1.124Contribution from side blanket modules = 1.1Contribution from top/bottom blankets = 0.024

Nuclear Heating Distribution

Side Blanket

Top/Bottom Blanket

Plant Thermal Power

for 1800 MW Fusion Power

Total Thermal Power = 2103 MW

1842 MW removed from blanket by Li

261 MW removed from VV by He

Ш

1730 MW in side blanket (500 MW surface + 1230 MW volumetric)

112 MW in top/bottom blankets (31 MW surface + 81 MW volumetric)

245 MW in side VV

16 MW in top/bottom VV

Structure Radiation Damage for Reference Design

	Side	Top/bottom
Peak FW dpa/FPY	19.2	15.6
Estimated Blanket Lifetime (FPY)	10.4	12.8

	Side	Top/bottom
EOL (40 FPY) dpa at Front of VV	170	65
EOL He appm at Back of VV	0.67	0.12

- ➤Blanket lifetime is ~10 FPY
- >VV is lifetime component
- Rewelding is possible at back of VV

Summary

- ➤ Overall TBR >1.1 can be achieved with small Li content in top/bottom blanket (20%) and no breeder in VV. There is no need to enrich Li in Li-6
- ➤ VV can be lifetime component with minimum blanket thickness of 47 cm on the side and 30 cm in top/bottom
- ➤ Blanket lifetime expected to be ~10 FPY
- The He-cooled VV should be at least 50 cm thick to allow rewelding at its back
- For 1800 MW_f, total thermal power is 2100 MW_{th} with 12.5% of it carried by the He coolant of the VV
- ➤ Differential swelling at the interface between W armor and FS FW needs to be assessed. At interface, W dpa is lower than FS dpa by a factor of 3 and W He production is lower by a factor of 38. Nuclear heating in W is higher by a factor of 3

