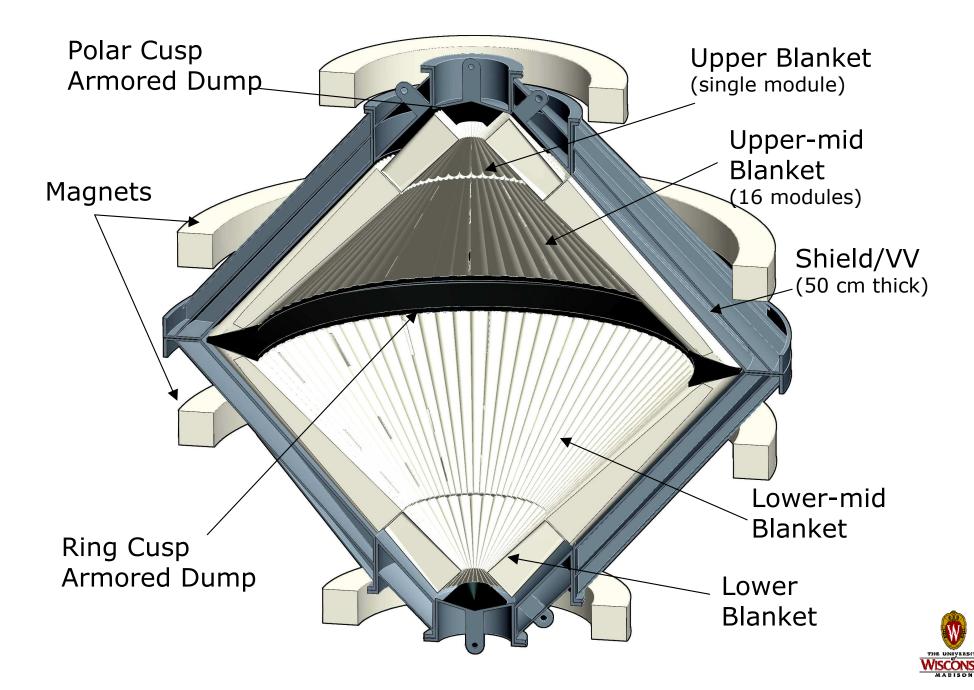
Shielding Requirements for Flibe/SiC Blanket with Magnetic Intervention


Mohamed Sawan

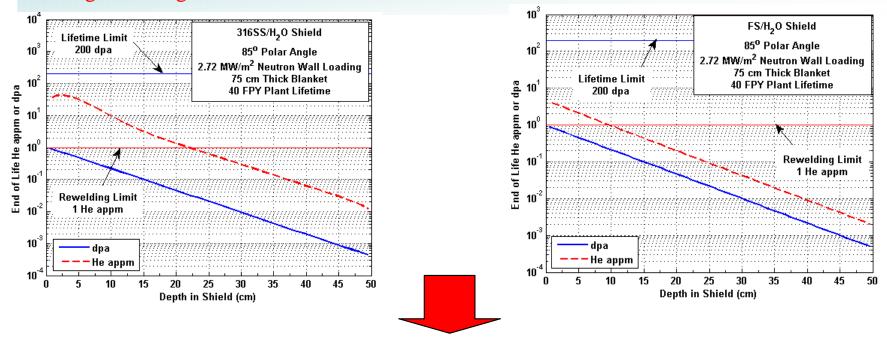
Fusion Technology Institute University of Wisconsin, Madison, WI

> HAPL Meeting UCSD January 30, 2007

Chamber Configuration

Design Requirements for SS/water Shield

End-of-life (40 FPY) peak He production at back of shield/VV <1 He appm to allow for rewelding


Peak fast neutron fluence in magnets is limited to 10^{19} n/cm² (E>0.1 MeV) due to degradation in J_c of superconductor

Peak dose in magnet insulator is limited to 10¹⁰ Rads due to degradation of mechanical properties

Radiation Damage in Shield

A 50 cm thick steel (316SS or FS) shield that doubles as VV is used with 25% water cooling Largest damage occurs at location with thinnest blanket

Peak end-of-life radiation damage in shield is only ~1 dpa \Rightarrow lifetime component He production in 316SS shield is ~ an order of magnitude higher than in FS Back of the shield/VV is reweldable

If FS is used rewelding is possible at locations at least 10 cm deep in shield. If 316SS is used rewelding is possible at locations at least 20 cm deep in shield

Peak Damage Parameters in Superconducting Cusp Coils

	45° polar	45° polar	85° polar	85° polar	Radi ation
	an g le	an g le	an g le	an g le	limit
	FS shi eld	316SS	FS shi eld	316SS	
		shi e ld		shi e ld	
End of life fast	3.63×10^{17}	2.82×10^{17}	7.93x 10 ¹⁷	6.20×10^{17}	10 ¹⁹
neutron					
fluence (n/cm^2)					
End of life	6.77×10^8	5.44×10^8	$1.14x \ 10^9$	$1.14x \ 10^9$	10 ¹⁰
ins ulator dose					
(R ads)					
Pe ak po wer	0.027	0.022	0.054	0.044	1
den sity					
(mW/cm^3)					

316SS shield provides slightly better magnet shieldingThe cusp coils are well protected with the 50 cm shield (either FS or 316SS)No restriction on location of the coils

Can We Have Personnel Access For Maintenance Behind Shield/VV?

Hands-on access for maintenance behind the shield/VV is not a requirement (only remote handling)

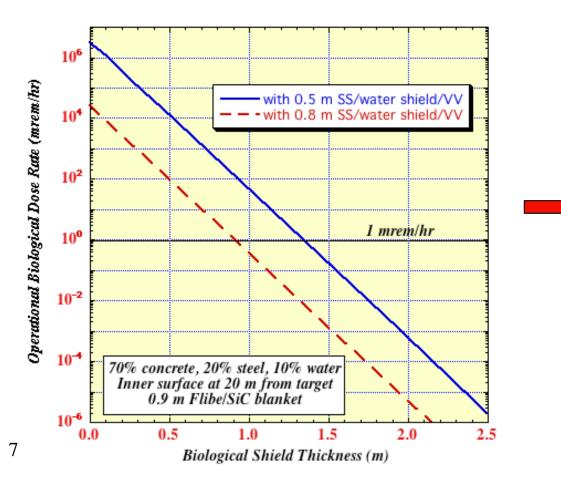
In ITER the limited time hands-on criterion adopted is 100 microSv/h (10 mrem/h) two weeks after shutdown. This roughly corresponds to $\sim 3x10^6$ n/cm².s fast neutron flux

Fast neutron flux behind 50 cm shield/VV is 5x10⁸ n/cm²s

Using 80 cm shield/VV results in fast neutron flux of 10⁶ n/cm²s behind it with possible hands-on maintenance

However:

Activation of thin beam duct could restrict access Need to move magnets farther from chamber

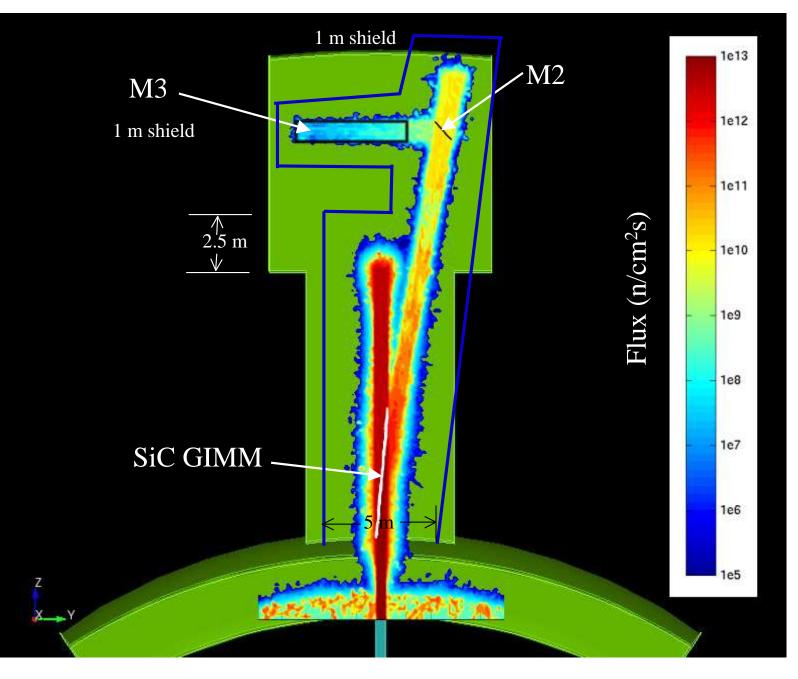


Required Biological Shield

Biological dose rate during operation behind the 50 cm shield/VV is 1.5×10^7 mrem/hr (1.2×10^5 for 80 cm shield/VV)

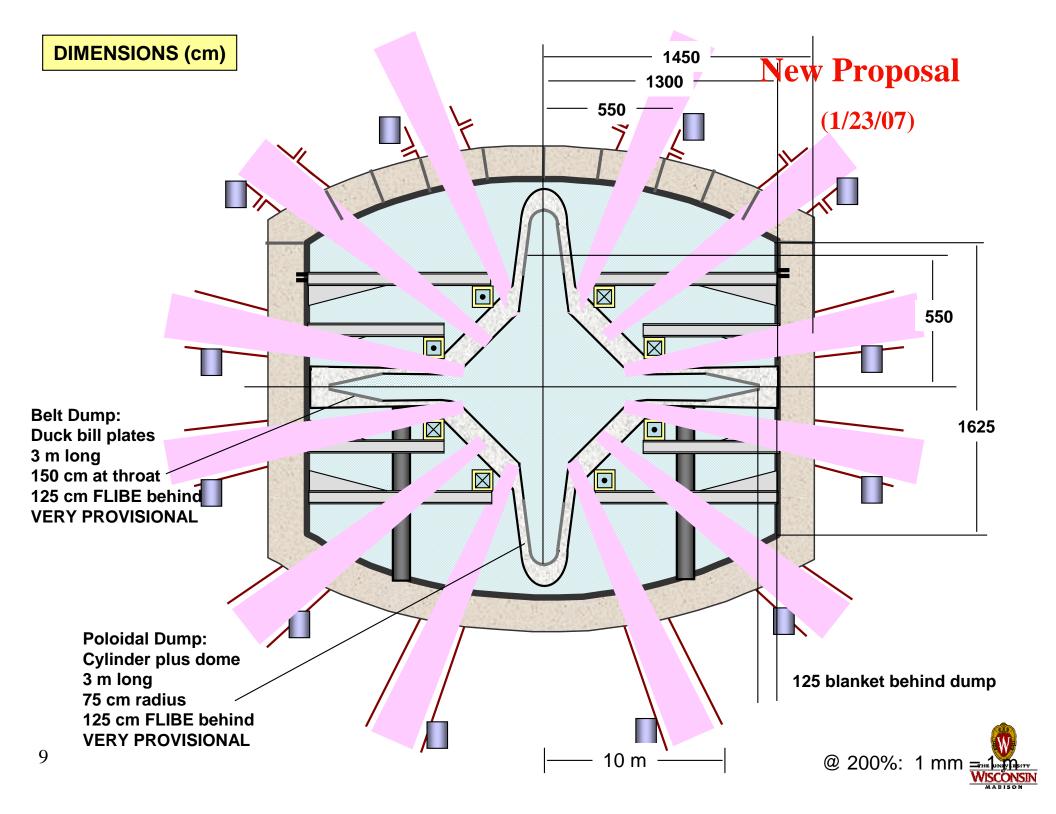
A biological shield is required to allow operational personnel access

A biological shield (containment building) made of 70% concrete, 20% carbon steel C1020, 10% water used with inner surface at 20 m from target


~1.5 thick biological shield is required behind the blanket and shield/VV to allow personnel access outside containment building during operation

Bio-shield required is only ~1m with 80 cm shield/VV

~2.5 m thick concrete is required behind the beam ports to shield personnel from streaming neutrons


Proposed Shield Modification at Final Optics of HAPL

Acceptable operational dose rate of 1 mrem/h corresponds to ~10 n/cm²s fast neutron flux

~25 cm of concrete shield gives an order of magnitude flux attenuation

Main Proposed Dimensions

- 125 cm Flibe/SiC blanket (assumed uniform)
- 20 cm SS/water magnet shield
- 10 cm SS/water VV
- 150 cm concrete bio-shield

Expected Nuclear Environment and Relation to Design Requirements

- Local TBR in blanket 1.205
 ⇒ OK
- Peak radiation levels in magnets
 - fast neutron fluence $4.3 \times 10^{17} \text{ n/cm}^2$
 - insulator dose 2.4x10⁹ Rads

 $\Rightarrow OK$

- Peak He production in VV
 - 316SS 0.6 appm
 - FS 0.02 appm
 - $\Rightarrow OK$
- Operational dose rate behind bio-shield 8.3 mrem/h
 ⇒ 1.8 m bio-shield needed

