

Updated DCLL TBM Neutronics Analysis

Mohamed Sawan¹

with Input from

Mo Dagher², Edward Marriott¹, Brandon Smith¹, and Clement Wong³

¹UW – Madison, Fusion Technology Institute ²University of California – Los Angeles ³General Atomics

> FNST Meeting UCLA August 12-14, 2008

- The DCLL TBM went through major design changes since the last time a technical design review was held in August 2006
- Detailed updated design configuration was released in April 2008
- The nuclear parameters for the DCLL TBM were updated for the current design
- Initial 1-D calculations performed for ITER mid-plane radial build that includes the inboard FWS module
- Calculations performed for configurations at the different vertical zones of TBM
- Started 3-D analysis for the detailed CAD model using the DAG-MCNP code

DCLL TBM Design Design Change Highlights

Original Design Concept

- 1. Reversed PbLi Flow
 - 1. Starting at the top
 - 2. PbLi Inlet in back Channel with Downward flow
 - 3. PbLi Outlet flow in Front channel Upward Flow
 - 4. Replaced PbLi concentric pipe concept with two individual I/O Pipes
- 2. He Flow in FW is Un-Changed, 2 circuits, 7 passes per circuit
- 3. He Flow in Grid Plate is Modularized.
- 4. He Flow in Grid plate in radial direction
- 5. Multi-layered back plate design Configuration.

Current Design Concept

484

DCLL TBM Design Features

DCLL Radial Build and Material Composition

- A radial build is the homogenization of the material composition along the radial direction of the TBM starting from the FW
- The TBM is divided into seven vertical layers each representing a poloidal section of the TBM
- These sections are determined based on the internal design configuration of the TBM, in order to maintain a uniform vertical configuration in each vertical layer
- For each poloidal layer the radial zones are homogenized by determining the volume fractions of each material in the zone
- The material volume fractions for each zone were then used in neutronics calculations to determine the power density distribution throughout the corresponding poloidal layer

Radial Build Layer Positions

Seven Layers were used

(Layer height shown in parentheses):

- 1) Top Plate (28mm)
- 2) PbLi Outlet (100mm)
- 3) Horizontal Grid Plate (20mm)
- 4) PbLi Inlet (120mm)
- 5) Midplane (1275mm)
- 6) Bottom Zone (93mm)
- 7) Bottom Plate (24mm)

Zone	Description	Thickness [mm]	% Be	% FS	% LL	% SiC	% He
1	PFC	2	100	0	0	0	0
2	Front wall of FW	4	0	100	0	0	0
3	FW cooling channel	20	0	17	0	0	83
4	Back wall of FW	4	0	100	0	0	0
5	Top/Bottom plate layer	322	0	42.8	0	0	57.2

View Showing Top Plate internal Details 15

Zone	Description	Thickness [mm]	% Be	% FS	% LL	% SiC	% He
1	PFC	2	100	0	0	0	0
2	Front wall of FW	4	0	100	0	0	0
3	FW cooling channel	20	0	17	0	0	83
4	Back wall of FW	4	0	100	0	0	0
5	FCI layer 1	7	0	6.3	24.7	55.4	13.6
6	Breeding channel	105	0	6.3	73.9	6.2	13.6
7	FCI layer 2	7	0	2	74	14.4	9.6
8	Breeding channel	86	0	2	86.3	2.1	9.6
9	FCI layer 3	7	0	2	64.8	23.6	9.6
10	Inner He manifold	10	0	37.1	51.2	2.1	9.6
11	Inner He channel	30	0	10.2	41.3	2.1	46.4
12	Outer He manifold	10	0	39.1	37.2	2.1	21.6
13	Outer He channel	13	0	10.2	33.1	2.1	54.6
14	Outer He channel with LL component	17	0	10.2	11.4	21.6	56.8
15	Back plate	30	0	87.8	2.6	0	9.6

Layer 2 – PbLi Outlet Manifold, Power Density Distribution

Zone Description	Thickness [mm]	% Be	% FS	% LL	% SiC	% He
1 PFC	2	100	0	0	0	0
2 Front wall of FW	4	0	100	0	0	0
3 FW cooling channel	20	0	17	0	0	83
4 Back wall of FW	4	0	100	0	0	0
5 FCI layer 1	7	0	6.3	24.7	55.4	13.6
6 Front breeding channel	66	0	6.3	73.9	6.2	13.6
7 FCI layer 2	7	0	6.3	24.7	55.4	13.6
8 Front wall of divider	4	0	86.4	0	0	13.6
9 Divider gap 1	10	0	31	0	0	69
10 Plenum layer	4	0	82.1	0	0	17.9
11 Divider gap 2	10	0	31	0	0	69
12 Back wall of divider	4	0	90.4	0	0	9.6
13 LL Horizontal plate region	180	0	42.4	0	0	57.6
14 Back plate	30	0	90.4	0	0	9.6

Layer 3 – Horizontal Grid Plate, Power Density Distribution

US		твм
00	DOLL	

Zone	Description	Thickness [mm]	% Be	% FS	% LL	% SiC	% He
1	PFC	2	100	0	0	0	0
2	Front wall of FW	4	0	100	0	0	0
3	FW cooling channel	20	0	17	0	0	83
4	Back wall of FW	4	0	100	0	0	0
5	FCI layer 1	7	0	6.3	24.7	55.4	13.6
6	Front breeding channel	66	0	6.3	73.9	6.2	13.6
7	FCI layer 2	7	0	6.3	24.7	55.4	13.6
8	Front wall of divider	4	0	86.4	0	0	13.6
9	Divider gap 1	10	0	31	0	0	69
10	Plenum layer	4	0	82.1	0	0	17.9
11	Divider gap 2	10	0	31	0	0	69
12	Back wall of divider	4	0	90.4	0	0	9.6
13	FCI layer 3	7	0	2	25.8	62.6	9.6
14	Back breeding channel	86	0	2	86.3	2.1	9.6
15	FCI layer 4	7	0	2	64.8	23.6	9.6
16	Inner He manifold	10	0	37.1	51.2	2.1	9.6
17	Inner He channel	30	0	10.2	41.3	2.1	46.4
18	Outer He manifold	10	0	39.1	37.2	2.1	21.6
19	Outer He channel	13	0	10.2	33.1	2.1	54.6
20	Outer He channel with LL component	17	0	10.2	11.4	21.6	56.8
21	Back plate	30	0	87.8	2.6	0	9.6

Layer 4 – PbLi Inlet Manifold (120mm), Power Density Distribution

Zone	Description	Thickness [mm]	% Be	% FS	% LL	% SiC	% He
1	PFC	2	100	0	0	0	0
2	Front wall of FW	4	0	100	0	0	0
3	FW cooling channel	20	0	17	0	0	83
4	Back wall of FW	4	0	100	0	0	0
5	FCI layer 1	7	0	6.3	24.7	55.4	13.6
6	Front breeding channel	66	0	6.3	73.9	6.2	13.6
7	FCI layer 2	7	0	6.3	24.7	55.4	13.6
8	Front wall of divider	4	0	86.4	0	0	13.6
9	Divider gap 1	10	0	31	0	0	69
10	Plenum layer	4	0	82.1	0	0	17.9
11	Divider gap 2	10	0	31	0	0	69
12	Back wall of divider	4	0	86.4	0	0	13.6
13	FCI layer 3	7	0	6.3	24.7	55.4	13.6
14	Back breeding channel	86	0	6.3	73.9	6.2	13.6
15	FCI layer 4	7	0	6.3	24.7	55.4	13.6
16	Inner He manifold	10	0	86.4	0	0	13.6
17	Inner He channel	30	0	12.6	0	0	87.4
18	Outer He manifold	10	0	88.4	0	0	11.6
19	Outer He channel	30	0	10.2	0	0	89.8
20	Back plate	30	0	90.4	0	0	9.6

Layer 5 – Mid-Plane (1275mm), Power Density Distribution

Zone Description		Thickness [mm]	% Be	% FS	% LL	% SiC	% He
1	PFC	2	100	0	0	0	0
2	Front wall of FW	4	0	100	0	0	0
3	FW cooling channel	20	0	17	0	0	83
4	Back wall of FW	4	0	100	0	0	0
5	FCI layer 1	7	0	6.3	24.7	55.4	13.6
6	Breeding channel	198	0	6.3	73.9	6.2	13.6
7	FCI layer 2	7	0	6.3	24.7	55.4	13.6
8	Inner He manifold	10	0	86.4	0	0	13.6
9	Inner He channel	30	0	12.6	0	0	87.4
10	Outer He manifold	10	0	88.4	0	0	11.6
11	Outer He channel	30	0	10.2	0	0	89.8
12	Back plate	30	0	90.4	0	0	9.6

Layer 6 – Bottom Zone (93mm), Power Density Distribution

Layer 7 – Bottom Plate (24mm)

Zone	Description	Thickness [mm]	% Be	% FS	% LL	% SiC	% He
1	PFC	2	100	0	0	0	0
2	Front wall of FW	4	0	100	0	0	0
3	FW cooling channel	20	0	17	0	0	83
4	Back wall of FW	4	0	100	0	0	0
5	Top/Bottom plate layer	322	0	42.8	0	0	57.2

Total Nuclear Heating in TBM

US DCLL TBM

Peak power density in SiC FCI

layer 2

4.79 W/cm³ in

Vertical Layer	Height (mm)	Nuclear Energy Mult. (M _n)	Nuclear Heating (MW)
1	28	0.857	0.009
2	100	0.935	0.035
3	20	0.904	0.007
4	120	0.939	0.042
5	1275	0.920	0.441
6	93	0.917	0.032
7	24	0.857	0.008
Total	1660	0.920	0.574

- Local TBR in the 35 cm thick DCLL TBM is only 0.561
- Tritium generation rate in the TBM is 1.55x10¹⁷ atom/s (7.73x10⁻⁷ g/s) during a D-T pulse with 500 MW fusion power
- For a pulse with 400 s flat top preceded by 20 s linear ramp up to full power and followed by 20 s linear ramp down total tritium generation is 3.25x10⁻⁴ g/pulse
- For the planned 3000 pulses per year the annual tritium production in the TBM is 0.97 g/year
- ➢ Tritium production in the Be PFC is 1.54x10⁻⁹ g/s ⇒ 6.47x10⁻⁷ g/pulse ⇒ 1.94x10⁻³ g/year

Vertical Layer	Height (mm)	Local TBR	Tritium Prod. (g/s)
1	28	0	0
2	100	0.733	6,08x10 ⁻⁸
3	20	0.338	5.61x10 ⁻⁹
4	120	0.662	6.59x10 ⁻⁸
5	1275	0.560	5.92x10 ⁻⁷
6	93	0.625	4.82x10 ⁻⁸
7	24	0	0
Total	1660	0.561	7.73x10 ⁻⁷

Radiation Damage in Steel Structure

	C Sublattice	Si Sublattice	SiC	Graphite Interface
dpa/FPY	9.86	8.41	9.14	6.57
He appm/FPY	1,235	320	777	1,235
H appm/FPY	0.2	583	291	0.2
% Burnup/FPY	0.05	0.09	0.14	0.05

- Higher atomic displacement damage rates occur in C sublattice
- He production in C is about a factor of 4 larger than in Si due to the (n,n'3α) reaction
- Significant H production occurs in Si with negligible amount in C
- Burnup of Si is about twice that of C
- He production rate in graphite interface is ~60% higher than in SiC
- The issue of lifetime was addressed in a recent paper:
 - M. Sawan, L. Snead, and S. Zinkle, "Radiation onentDamage Parameters for SiC/SiC Composite Structure in Fusion Nuclear Environment," Fusion Science & Technology, vol. 44, pp 150 154 (2003).
- The FCI is not a structural comp and main concern is change in resistivity resulting from transmutations
- Transmutation of Si produce Mg and Al with smaller amount of P. The main transmutation product for C is Be with smaller amount of B and Li. This might not be a concern for the ITER low fluence but is important for a DEMO or power plant

Shielding Required Behind TBM

Criterion for maintenance access used in ITER is dose rate <100 μSv/h at 10⁶ s after shutdown

- Rules of thumb used to relate dose after shutdown from decay gamma of activated material to fast neutron flux
- Formulas used in the ITER Nuclear Analysis Report, G 73 DDD 2 W 0.2, July 2004, relate the dose rate @10⁶ s after shutdown to the fast neutron flux during operation
- ▷ DR(µSv/h) ~ 1-3x10⁻⁵ FF(n/cm²s)
- To be conservative we use the factor of 3x10⁻⁵ and assume the fast flux component with E>0.1 MeV
- To satisfy the ITER guidelines for maintenance accessibility the fast neutron flux during operation should be <3x10⁶ n/cm²s (E>0.1 MeV)

A Surface Source Is Used in The Calculations

US DCLL TBM

- > An extra surface was inserted in front of equatorial port in the 40° sector model of **ITER** geometry
- > All particles crossing this surface were recorded (location, angle, energy, weight)
- Surface crossings will be read as a surface source in front of integrated CAD model of frame and TBM
- This properly accounts for contribution from the source and other components in the ITER chamber

2-D calculations for the TBM indicated that the 20 cm thick frame results in neutronics decoupling between TBM and adjacent shield modules with <2% effect. The frame has significant effect on DCLL parameters (up to 30%) and should be included

	TBM only	TBM+Frame	TBM+Frame+FWS
Front fast flux	1	0.919	0.895
Back fast flux	1	0.730	0.717
Front FS heating	1	0.976	0.981
Back FS heating	1	0.723	0.706
Front FS dpa	1	0.973	0.964
Back FS dpa	1	0.788	0.779
Front PbLi heating	1	0.983	1.000
Back PbLi heating	1	0.765	0.747
Front PbLi tritium production	1	1.003	1.049
Back PbLi tritium production	1	0.691	0.664

Only half of the frame with a TBM is used in the calculations surrounded on the sides with reflecting **boundaries**

Surface source

