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Zone Fetter 10CFR61
IB FW 0.2 (108mAg) 0.022 (63Ni)
IB VV 0.092 (108mAg, 

 94Nb) 0.035 (94Nb, 63Ni)
IB Mag. 0.0002 (108mAg) 0.0011 (63Ni)
OB FW 0.21 (108mAg) 0.024 (63Ni)
OB VV 0.011 (108mAg, 94Nb) 0.0032 (94Nb, 63Ni)

OB Mag. 2.26x10-6 (94Nb) 2.56x10-6 (94Nb, 63Ni)
Divertor 0.034 (108mAg) 0.013 (94Nb)

ConclusionsConclusionsPeak end-of-life cumulative radiation damage values in Cu
components are < 0.05 dpa

Data on loss of ductility between 80 and 373 K and thermal
creep for CuCrZr at temperatures up to 500° C are needed.
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�The commonly accepted dose limit for epoxies is 109 Rads
(ITER)
�Polyimides are more radiation resistant
�Hybrids of polyimides and epoxies could provide radiation

resistant insulators with friendly processing requirements
�In FIRE design with wedged coils and added compression

ring, the TF inner leg insulation does not have to have
significant bond shear strength
�Peak shear stresses occur at top and bottom of IB leg

behind divertor. End-of-life dose to insulator at this location
~109 Rads
�Magnet insulation materials with radiation tolerance to

1.5x1010 Rads under FIRE load conditions need to be
developed.
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� End-of-life He production values imply that VV will be reweldable
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conditions should be used
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� Following DT shots hands-on ex-vessel maintenance is possible with the
110 cm shield plug in midplane ports and the 20 cm shield at top of TF coil

� All components would qualify for disposal as class C LLW according to
both 10CFR61 and Fetter limits
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FIRE Divertor
Cross Section of FIRE

BeCu / Cu interface
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IB OB
Be PFC 33.3 35.6
Cu Tiles 46.9 46.3
Gasket 40.6 40.6
Cooled Cu Vessel Cladding 40.2 40.1
H2O FWCoolant 27.6 30.9
SS Inner VV Wall 33.8 30.9
SS VV Filer 32.9 28.5
H2O VV Coolant 14.9 15.5
SS Outer VV Wall 30.3 0.07
Microtherm Insulation 9.8 0.02
SS Inner Coil Case NA 0.038
Cu Magnet 19.5 0.019
SS Outer Coil Case NA 2.8x10-5

Dose (Rads) % from DD Shots
IB midplane 1.26x1010 13%
OB midplane 1.26x107 1.6%
Divertor 9.80x108 10%

He appm

IB midplane 0.11
OB midplane 0.15
Divertor 0.016

Magnet Nuclear
Heating (MW)

IB region 22.9
OB region 0.05
Divertor region 2.1
Total 25.05
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All Components Qualify as Class C LLW

�Following DT shots hands-on ex-vessel
maintenance is possible with
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maintenance is possible behind OB VV

�Following DT shots hands-on ex-vessel
maintenance is possible with
− The 110 cm long steel shield plug in midplane ports

− The 20 cm shield at top of TF coil

�Following DD shots immediate access for
maintenance is possible behind OB VV

Activity and Decay Heat Values are TolerableActivity and Decay Heat Values are Tolerable

Biological Dose Rates at MidplaneBiological Dose Rates at Midplane

�   He Production in VV < 1 appm
Allowing for Rewelding

�   Contribution from DD shots
very small (<0.15%)




