Technological Challenges for Realizing Fusion Energy

Mohamed Sawan

Fusion Technology Institute University of Wisconsin-Madison

International Workshop on Nuclear Science and Education Cairo, Egypt 17-19 March 2009

Fossil Fuels Still Account for Over 85% of the Primary Energy Consumed in the World

[ref. Y.Uchiyama, Report Of Central Research Institute Of Electrical Power Industry, T94009 K.Tokimatsu et al. 6th IAEA TCM on Fusion Power Plant Design & Technology]

There are several ways to reach fusion conditions – all involve a plasma

High-density, high-temperature thermonuclear plasmas must be confined long enough for efficient fusion reactions to occur:

==> Net energy gain

Nuclear Fusion Energy

- Unlike fission where uranium splits generating energy, fusion occurs when two hydrogen nuclei fuse together and release energy
- ≻Two approaches:
 - Magnetic confinement
 - Inertial confinement

MFE and IFE Fusion Reactors are WISCONSIN Complex with Many Components

MFE

IFE

• The tokamak is the most widely studied configuration and uses a large current in the plasma to twist the magnetic fields.

• Holding the plasma with magnetic fields is sometimes likened to compressing Jell-o with rubber bands.

Illustrations from IPP and ORNL

Maxwellian Fusion Reaction Rates

D-T Fusion Represents a Nearly Inexhaustible Energy Source

Fuels: Deuterium: abundant in sea water Tritium: Half-life~12 years...must be produced?

"Everybody" is running experiments in <u>Wisconsin</u> magnetic fusion

U.S.

Joint European Torus (JET) is currently

There Are Many Experimental Fusion Devices on the University of Wisconsin Campus

RFP – Physics

Pegasus - Engineering Physics

HSX - Electrical & Computer Engineering

IEC - Engineering Physics

Wisconsin Wisconsin

U.S.

Fusion Temperatures Attained, Fusion Confinement One Step Away

ITER is a 500 MW Tokamak Experiment THE UNIVERSITY DISON

Main Plasma Parameters and Dimensi	ons
Total fusion power	500 MW
Q — Fusion power/auxiliary heating power	≥10
Average (14 MeV) neutron wall loading	$0.57 \ MW/m^2$
Plasma major radius	6.2 m
Plasma minor radius	2.0 m
Plasma current	15 MA
Toroidal field @ 6.2 m radius	5.3 T
Plasma Volume	837 m ³
Installed auxiliary heating/current drive power	73 MW

•Ref DOE

P

- Agreement signed on November 21, 2006
- Seven parties with more than half of the world population
- Cost ~\$7B
- ITER construction started in 2008 at Cadarache, France
- First plasma in 2018 and 20 year operation

Т

In-kind contributions

How do we:

- Provide specified magnetic field over a large volume?
- Protect the device from high heat flux and neutrons?
- Heat the plasma and drive the plasma current?
- Diagnose the plasma?
- Maintain the device over time?
- Integrate the systems into a coherent design?

ITER is complex (~10⁷ parts) and big; U.S. the Core of ITER weighs 24000 tonnes VISCONSIN Cryostat 29 m high x 29 m dia. **Toroidal Field Coil** Nb₃Sn, 18, wedged Vacuum Vessel 9 sectors **Blanket** 440 modules Poloidal Field Coil Nb-Ti, 6 **Port Plug** heating/current drive, limiters, diagnostics **Central Solenoid** [test blankets] Nb₃Sn, 6 modules Torus **Cryopumps** 8 Scale Divertor figure 54 cassettes

Inside the cryostat is the magnetic coil set

- Toroidal Field Coils (18) Provide primary magnetic field and support structure
- Poloidal Field Coils (6) Provide shaping and position control
- Central Solenoid (6 seg.) Drives plasma current inductively
- Correction coils (18) Compensate for field errors and stabilize MHD instabilities

Magnets are unprecedented in size and <u>Wisconsin</u> performance for fusion systems

TF coils 11.8 Tesla, 41 GJ 400 MN centering force Central Solenoid 13 Tesla, 7 GJ 20 kV, 1.2 T/s U.S.

Vacuum vessel is the plasma chamber

- Double walled, water-cooled, stainless steel structure provides high quality vacuum and first confinement barrier for radioactive materials.
- Prototype constructed to prove feasibility of double wall construction with prototypic size and tolerances.

• Vessel must be protected from the plasma.

Plasma interacts with surfaces

U.S.

- The core plasma must be kept clean of impurities and He ash.
- The plasma facing component surface sees high density and temperature plasma.
- Heat flux on plasma facing surfaces can range above 10⁴ MW/m² for short times and above 10 MW/m² continuously (reentry vehicles ~ 100 MW/m²)
- Key issues are hydrogen trapping, erosion, and thermal fatigue.
- Spans science specialties from ionized gases to materials science.

Plasma facing components shield vessely WISCONSIN and magnets from heat flux, neutrons

U.S.

- Neutron wall load peaks on midplane Initial DT operation ~ 0.75 MW/m²
- TF heat load < 15 kw
- Magnet insulation dose < 10⁷ Gray
- He production in VV < 1 appm

Divertor exhausts a major part of plasma <u>Wisconsin</u> heating power and helium "ash"

Vertical target (W part)

U.S.

Divertor Cassette

<u>Challenge:</u> Absorb 10-20 MW/m² heat flux while minimizing impurity influx, tritium retention

The Blanket serves three main functions:

•To remove the useful neutron power and most of the particle power in the plasma

- •To provide shielding of the vacuum vessel structure and S/C coils
- •To help in passive stabilization of the plasma

100 – 240 C, 3 - 4.4 MPa

Neutronics analyses need detailed models **U.S**. WISCONSIN Source Input Table 400 -300 200 100 Z (cm) 100 200 -300 400 500 600 700 800 400 R (cm) 10 75 t along z axis [cm] W/cm³ Height a **First** 9834 Wall 8.2947 24.5 19.5 6.6391 4.9834 14.5 3.2947 9.5 1.6391 Angle in azimuthal direction [degrees] 0.016556 0.5 4.5 Distance in radial direction [cm] 0 Detailed nuclear heating distr.

Plasma heating / current drive require

- High energy (1 MeV D⁻) ion beams + radio frequency heating tuned to key plasma frequencies (ion, electron cyclotron, lower hybrid).
- RF systems modular and interchangeable in equatorial ports. EC used in upper ports.
- 2 main beam-lines, with room for third.
- Initial installation 73 MW with room for expansion to 130 MW (installed).

Diagnostics monitor plasma behavior and <u>Wisconsin</u>must survive in harsh environment

U.S.

Test Blanket modules demonstrate tritium <u>Wisconsin</u> breeding technology

- Tritium breeding is necessary for the fusion fuel cycle.
- Several breeding blanket concepts are under consideration.
- ITER provides three equatorial ports for test blanket modules.

Coordination among all the team members is essential

WINDERSTER WHAT about Commercial Fusion WISCONSIN Power Plants Beyond ITER?

Fusion Power Plant

Much Harder Neutron Spectrum in Fusion Compared to Fission

He/dpa ratio is significantly higher than in a fission reactor nuclear environment (~10 vs. ~0.3 for FS)

Do we still get radioactive waste in fusion reactors?

- Energetic 14 MeV neutrons are emitted in plasma and slowed down and absorbed by surrounding components
- Neutron interactions result in producing radioactive materials
- Proper choice of "low activation" materials help eliminating generation of high level long lived waste
- Most fusion waste can be either recycled or is classified as low level waste for shallow land burial

Based on safety, waste disposal and performance considerations, the 3 leading candidates are:

Ferritic/martensitic steels Vanadium alloy SiC/SiC composites

International Symposium on Silicon Carbide and Carbon-Based Materials for Fusion and Advanced Nuclear Energy applications, 18-22 Jan 2009, Daytona Beach, FL

All Fusion Machines Beyond ITER WISCONSIN Must Breed Their Own Tritium

Tritium Self-Sufficiency

To ensure tritium self-sufficiency, the calculated achievable tritium breeding ratio should be equal to or greater than the required TBR

Required tritium breeding ratio

- Is dependent on many system physics and technology parameters:
 - plasma edge recycling, tritium fractional burn-up in the plasma
 - tritium inventories (release/retention) in components
 - efficiency/capacity/reliability of the tritium processing system

Achievable tritium breeding ratio

Is a function of technology, material and physics:

- FW thickness, amount of structure in the blanket, blanket concept
- Presence of stabilizing/conducting shell materials/coils for plasma control and attaining advanced plasma physics modes
- Plasma heating/fueling/exhaust, PFC coating/materials/geometry
- Plasma configuration (tokamak, stellerator, etc.)
- Uncertainties in nuclear data required for accurate determination of TBR

Tritium Breeding Potential of Candidate Breeders

- Li and LiPb have highest breeding potential
- Breeders with moderate breeding potential (Li₂O, Flibe) require moderate amount of multiplier
- Ceramic breeders have poor breeding potential and require significant amount of multiplier and minimal structure content
- In realistic designs, the structure, configuration, and penetrations will degrade the achievable overall TBR below the values shown

Blankets systems are complex and have many integrated functions, materials, and interfaces

One Example of Innovation

The US-Selected Dual Coolant Lead Lithium (DCLL) TBM Concept provides a pathway to high outlet temperature with current generation structural materials :

- Use RAFS with He cooling for structure, but SiC Flow Channel Inserts (FCI) to thermally and electrically isolate PbLi breeder/coolant
- Result is High outlet temperature PbLi flow for improved thermal efficiency, while making best use of both RAFS and SiC

Nuclear Analysis is Essential WISCONSIN Part of Fusion System Design

- Energetic 14 MeV neutrons are emitted in plasma and slowed down and absorbed by surrounding components
- Nuclear analysis for components surrounding the plasma is essential element of fusion nuclear technology
 - Tritium production in breeding blankets to ensure tritium selfsufficiency
 - Nuclear heating (energy deposition) for thermal analysis and cooling requirement
 - Radiation damage in structural material and other sensitive components for lifetime assessment
 - Provide adequate shielding for components (e.g., magnets) and personnel access
 - Activation analysis for safety assessment and radwaste management

State-of-the-art predictive capabilities (codes and data) are essential to perform required nuclear analyses

DAG-MCNP Allows Generating High-Fidelity

DAG-MCNP allows predicting truthful performance for the geometrically complex fusion systems

Example: Detailed DAG-MCNP 3-D neutronics analysis of TBM integrated with the surrounding water cooled frame and representation of exact source and other in-vessel components:

- yields total tritium production in the TBM that is 45% lower than the 1-D estimate
- yields total nuclear heating in the TBM that is 35% lower than the 1-D estimate of 0.574 MW

DCLL TBM

Mid-plane nuclear heating (gamma: left; neutron: right)

- Fusion has the potential to be an attractive energy source, and research is under way in many countries around the world
- The ITER project combines the expertise from around the world to build the first fusion reactor – China, EU, India, Japan, Korea, Russian Federation and the U.S.
- An international organization has been established at Cadarache, France, where ITER will be built
- There are many engineering challenges, but each can be met
- ITER is proceeding toward a first plasma in 2018
- Additional technological challenges should be overcome to realize fusion as an attractive source of sustainable and environmentally friendly source of energy