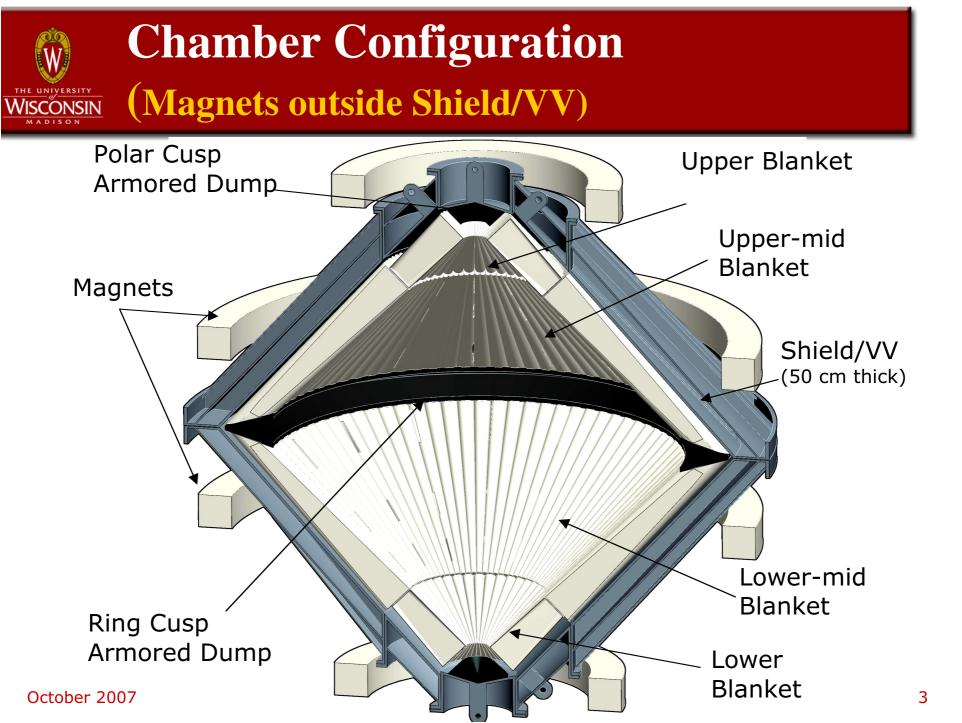
Required Dimensions of HAPL Core System with Magnetic Intervention

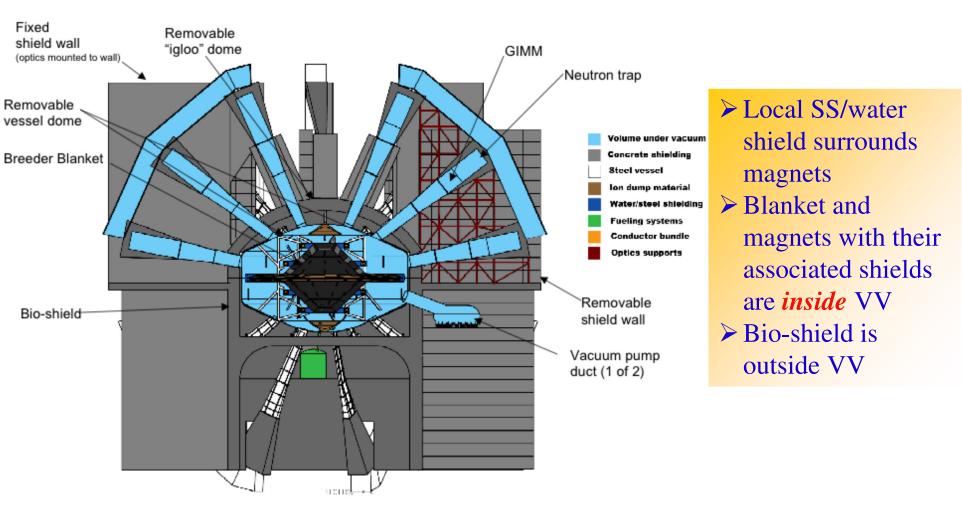
Mohamed Sawan

Carol Aplin UW Fusion Technology Inst. Rene Raffray UCSD

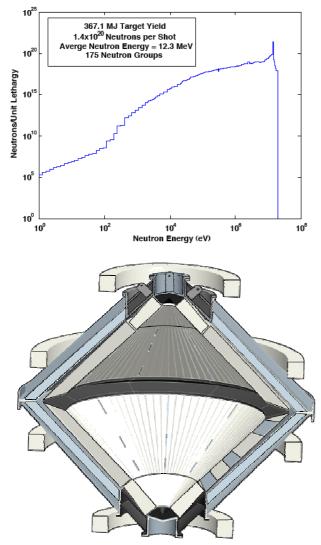
> HAPL Project Meeting NRL October 30 - 31, 2007

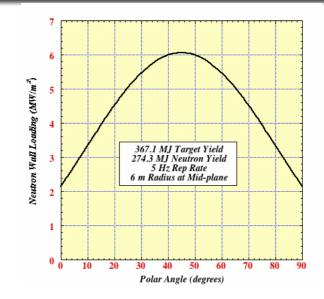

duced by University Communic

Background


Two HAPL core system configurations considered with magnetic intervention

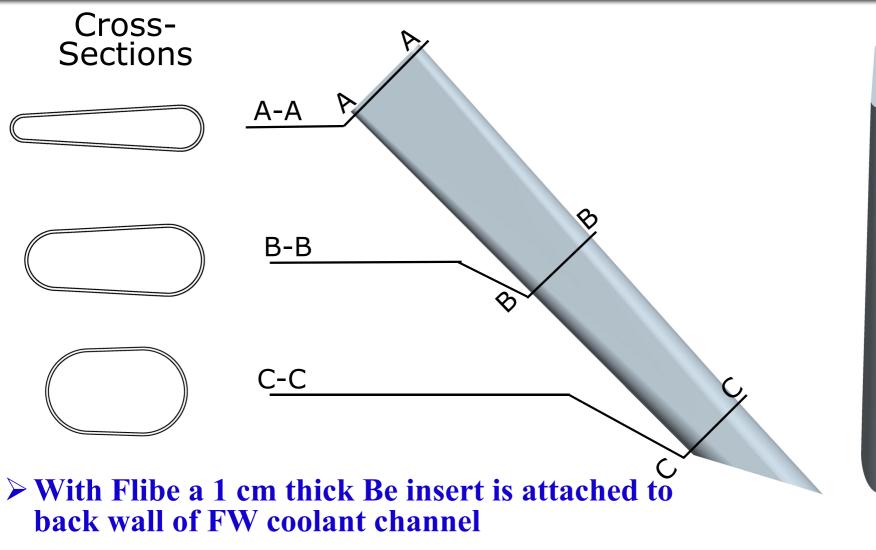
- Small VV between chamber and magnets
- Large VV enclosing chamber and magnets
- ➤Two blanket design options considered with low electrical conductivity SiC_f/SiC composite structure (required for dissipating the magnetic energy resistively)
 - LiPb/SiC
 - Flibe/Be/SiC
- ➢ Required dimensions of HAPL core components that satisfy nuclear design requirements were determined for the two blanket concepts and the two core system configurations


Chamber Configuration (Magnets inside VV)



HAPL Meeting, NRL

Neutron Wall Loading Distribution



- NWL peaks at 45° polar angle where FW is closest to target and source neutrons impinge perpendicular to it
- Peak NWL is 6 MW/m²
- Average chamber NWL is 4.3 MW/m²

Blanket Sub-Module

October 2007

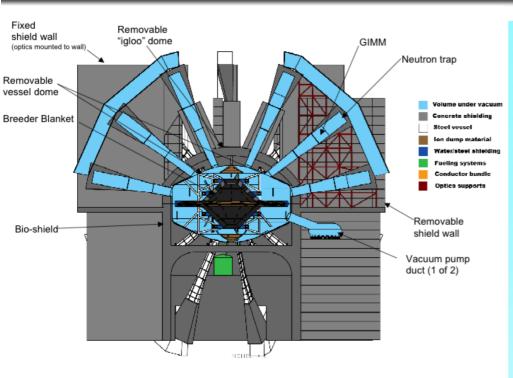
Nuclear Design Requirements

> Tritium self-sufficiency Overall TBR >1.1 > Shield and VV are lifetime components Peak end-of-life radiation damage <200 dpa > Magnet is lifetime component Peak fast neutron fluence <10¹⁹ n/cm² (E>0.1 MeV) Peak insulator dose $<10^{10}$ Rads > Vacuum vessel is reweldable Peak end-of-life He production <1 He appm > Personnel access allowed during operation outside biological shield Operational dose rate <1 mrem/h

Tritium Breeding Requirement

- Tritium breeding affected by space taken by ring and point cusps and beam ports
- Full angle subtended by the ring cusp and each of the point cusps is ~8.5°
 - Breeding blanket coverage lost by the ring cusp is 7.4%
 - Breeding blanket coverage lost by the two point cusps is 0.3%
- > Breeding blanket coverage lost by 40 beam ports is 0.7%
- ≻Total breeding blanket coverage lost is 8.4%

For an overall TBR of 1.1 required for tritium self-sufficiency, the local TBR should be 1.2


Dimensions for Configuration with Small VV

- Blanket thickness is 70 cm at mid-plane and increases to 106 cm at top/bottom of chamber
- A 50 cm thick steel/water shield that doubles as VV is used between blanket and magnets
- ≻~1.5 thick biological shield is required behind the blanket and shield/VV and increased to ~2.5 m behind beam ports
- All nuclear design requirements satisfied with these dimensions for both LiPb/SiC (with 90% Li-6) and Flibe/SiC (with nat. Li) blankets
- Flibe/SiC gives better performance parameters compared to LiPb/SiC
 - ~3% higher thermal power
 - A factor of 5 lower dpa in shield at end-of-life
 - A factor of 2 lower magnet insulator dose at end-of-life
- Flibe has the advantage of lighter weight to support and lower electric conductivity

WISCONSIN

Neutronics Assessment for MI Chamber Core Configuration with Outer VV

Local SS/water shield surrounds magnets
Blanket and magnets with their associated shields are *inside* VV
Dis shield is sutside VV

Bio-shield is outside VV

Several iterations carried out for both LiPb and Flibe blankets with conditions at polar angle of 85° to determine dimensions that simultaneously satisfy all nuclear design requirements

- Tritium self-sufficiency is achievable
- ✓ Shield, magnets, VV are lifetime components
- ✓ VV is reweldable
- Operational personnel accessibility outside bio-shield

October 2007

Dimensions of MI Chamber Core Components <u>WISCONSIN</u> (Flibe/SiC Blanket Option)

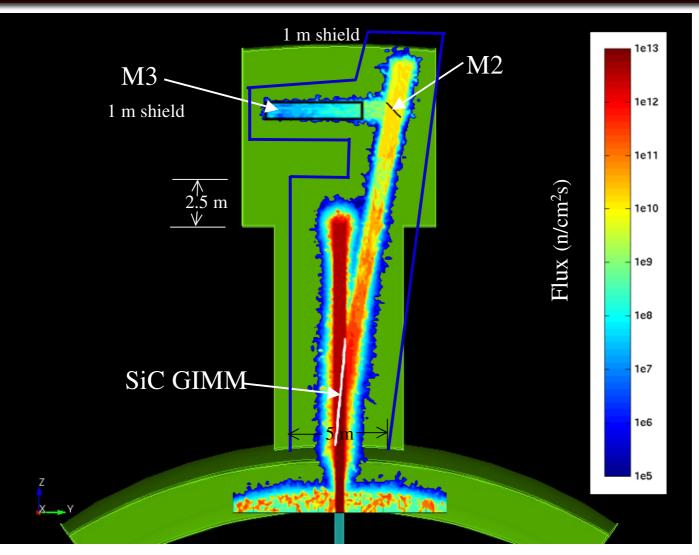
- Blanket thickness varies from 100 cm at mid-plane to 150 cm at top/bottom of chamber
- Use natural Li in Flibe
- > 25 cm thick steel/water (25% water coolant) magnet shield
- > 10 cm steel/water (25% water coolant) vacuum vessel
- ➤ 1.9 m concrete bio-shield (70% concrete, 20% carbon steel C1020, 10% water)
- Local TBR 1.204
- Tritium self-sufficiency can be achieved
- Peak EOL shield damage 0.04 dpa
 - Magnet shield is lifetime component
- Peak EOL magnet fast neutron fluence 1.14x10¹⁸ n/cm²
- Peak EOL magnet insulator dose 3.77x10⁹ Rads
 - Magnet is lifetime component
- Peak EOL VV He production 0.13 appm (FS), 3.23 appm (SS)
 - Ferritic steel vacuum vessel is reweldable
- Operational dose rate outside bio-shield 0.27 mrem/h
 - Personnel access allowed during operation outside bio-shield

Required Dimensions for LiPb/SiC Blanket

- Blanket composition is 90% LiPb (90% Li-6) and 10% SiC structure
- Using same dimensions determined for the Flibe/SiC blanket option does not allow for simultaneously satisfying all design requirements
 - Local TBR 1.47 (excessive breeding)
 - Peak EOL magnet insulator dose 4x10¹⁰ Rads (magnet not lifetime component)
 - Operational dose rate outside bio-shield 1.1 mrem/h (need thicker bio-shield)
- Reducing enrichment results in less effective shielding
- Using a thicker blanket will make it more difficult to support the weight and excessive tritium will be produced
- More magnet shielding is needed
- Several calculations performed with conditions at polar angle of 85° to determine dimensions that satisfy all design requirements

Dimensions of MI Chamber Core Components <u>WISCONSIN</u> (LiPb/SiC Blanket Option)

- Blanket thickness varies from 80 cm at mid-plane to 120 cm at top/bottom of chamber
- ➤ Use low Li enrichment in LiPb (10% Li-6)
- ➢ 45 cm thick steel/water (25% water coolant) magnet shield
- > 10 cm steel/water (25% water coolant) vacuum vessel
- ➤ 2.2 m concrete bio-shield (70% concrete, 20% carbon steel C1020, 10% water)
- Local TBR 1.217
- Tritium self-sufficiency can be achieved
- Peak EOL shield damage 4 dpa
 - Magnet shield is lifetime component
- Peak EOL magnet fast neutron fluence 3.16x10¹⁷ n/cm²
- Peak EOL magnet insulator dose 4.8x10⁹ Rads
 - Magnet is lifetime component
- Peak EOL VV He production 0.55 appm (FS), 541 appm (SS)
 - Ferritic steel vacuum vessel is reweldable
- Operational dose rate outside bio-shield 0.42 mrem/h
 - Personnel access allowed during operation outside bio-shield



Comparison of Dimensions that Satisfy All Design Requirements for the Blanket Options

	Flibe Blanket	LiPb Blanket
Blanket Thickness (cm)	100-150	80-120
Lithium Enrichment	7.5% Li-6	10% Li-6
Magnet Shield Thickness (cm)	25	45
Vacuum Vessel Thickness (cm)	10	10
Bio-shield Thickness (cm)	190	220

- Although LiPb blanket is thinner, the weight is still larger
- Magnet shield is a factor of ~2 heavier with liPb blanket resulting in more support requirements
- ~0.3 m thicker bio-shield is required with LiPb blanket
- We find the Flibe blanket to be well suited for this configuration based on the above findings and because of its lower electrical conductivity

Bio-shield Dimensions Around Final Optics

October 2007

HAPL Meeting, NRL

Summary and Conclusions

- All neutronics requirements can be satisfied with a Flibe/SiC or a LiPb/SiC blanket in HAPL with magnetic intervention
- ➤A 1 cm thick Be insert plate in the FW coolant channel is required with Flibe to ensure tritium self-sufficiency
- Determined dimensions that simultaneously satisfy all nuclear design requirements
- Flibe blanket is well suited for magnetic intervention due to lighter blanket weight to support, thinner magnet and biological shields, and lower electrical conductivity
- Upon converging on a reference blanket design and configuration option, 3-D neutronics calculations will be performed to confirm that the design satisfies all requirements