

Nuclear and Environmental Features of Pulsed Driven Fusion Energy

Mohamed Sawan Laila El-Guebaly Fusion Technology Institute The University of Wisconsin-Madison

> 2008 AAAS SWARM Albuquerque, NM April 11, 2008

Fusion Power Plants Demonstrate Adequate Performance in Several Safety and Environmental Areas

Environmental impact

- Minimal greenhouse gas emissions
- **Minimal radioactive releases**[#] during normal and abnormal operations
- No high-level waste
- Minimal low-level waste through recycling/clearance
- **Low activation materials** with strict impurity control
 - \Rightarrow minimal long-term environmental impact.

Occupational and public safety:

- No evacuation plan following abnormal events (early dose at site boundary < 1 rem^{*}) to avoid disturbing public daily life.
- Low dose to workers and personnel during operation and maintenance activity $(< 2.5 \text{ mrem/h}^*)$.
- Public safety during normal operation (bio-dose << 2.5 mrem/h^{*}) and following credible accidents:
 - LOCA, LOFA, LOVA, and by-pass events.
 - External events (seismic, hurricanes, tornadoes, etc.)

No energy and pressurization threats to confinement barriers (VV, cryostat, and bio-shield):

- Decay heat problem solved by design
- Chemical reaction avoided
- No combustible gas generated

- Chemical energy controlled by design
- Overpressure protection system
- Rapid, benign plasma shutdown

Fusion Releases Minimal Amount of Greenhouse Gases

DT Fusion is Easiest to Achieve

Fusion fuel cycles:

- D + T → n (14.07 MeV) + ⁴He (3.52 MeV)
- $D + D \rightarrow n (2.45 \text{ MeV}) + {}^{3}\text{He} (0.82 \text{ MeV})$

→ p (3.02 MeV) + T (1.01 MeV)

 $D + {}^{3}He \rightarrow p (14.68 \text{ MeV}) + {}^{4}He (3.67 \text{ MeV})$

 $^{3}\text{He} + ^{3}\text{He} \rightarrow 2 \text{ p} + ^{4}\text{He} (12.86 \text{ MeV})$

 $p + {}^{11}B \rightarrow 3 {}^{4}He (8.68 MeV)$

- While DT fusion is easiest to achieve, it produces large amount of energetic neutrons
- No radioactivity produced within fuel
- Neutrons activate materials surrounding fuel in reactor chamber
- Proper choice of material in reactor chamber reduces radioactivity production

THE UNIVERSITY WISCONSIN MADISON

D-T Fusion Represents a Nearly Inexhaustible Energy Source

Fuels: **Deuterium**: abundant in sea water **Tritium**: Half-life~12 years...must be produced?

- Liquid breeder jets and pool required for tritium breeding, recovering fusion energy, and shielding structural chamber wall
- Two liquid breeder options considered: Flibe (F₄Li₂Be), LiPb (Li₁₇Pb₈₃)
- Both have low tritium solubility leading to low tritium inventory

Z-pinch Reactor is Fuel Self-Sufficient

Tritium self-sufficiency ensured for both breeders

r	Tritium Production per Fusion		
	Flibe Breeder	LiPb Breeder	
Jets	0.840	0.711	
Nozzle Zone	0.019	0.053	
Pool	0.246	0.362	
RTL Foam	0.011	0.005	
Overall TBR	1.116	1.131	

THE UNIVERSITY WISCONSIN MADISON

Ē

Liquid Breeder Recovers and Multiplies Fusion Energy

	Thermal Power (GW)	
	Flibe	LiPb
Jets	2.546	2.372
Pool	0.474	0.566
Chamber Wall	0.139	0.320
Nozzle Zone	0.062	0.158
RTL Support Structure	0.074	0.104
RTL	0.018	0.017
RTL Foam	0.033	0.023
Total	3.346	3.560
Overall Energy Multiplication	1.115	1.187

- Target Yield 3 GJ
- Rep Rate 0.1 Hz
- 10 Chambers

- Liquid breeder recovers surface heat deposited by x-rays and ion debris
- Neutron interactions result in volumetric nuclear heating that is higher than fusion neutron energy with net energy multiplication

Cleanup Systems Needed for Flibe and LiPb

Flibe:

- Flibe dissociates under irradiation and has a compatibility problem with FS if radiolysis byproducts cannot be controlled by chemical means.
- Neutrons interact with Flibe and produce extremely corrosive free fluorine and the less corrosive tritiated hydrofluoric acid (TF).
- A reduction and oxidation (**REDOX**) agent, such as beryllium, is essential for the viability of Flibe to control free fluorine and TF and minimize corrosion (to eliminate carrying radioactive corroded material).
- Experimental work on REDOX to limit corrosive effects of F and TF is being performed at INL as part of US-Japan collaboration.

LiPb:

- Neutrons interact with Pb and Bi, producing hazardous radionuclides ²¹⁰Po (138 d) and ²⁰³Hg (47 d).
- **Controlling Bi impurity** can limit ²¹⁰Po inventory.
- Online purification system is necessary to remove ²¹⁰Po and/or ²⁰⁹Bi.

Thick Liquid Breeder Protects Chamber Wall, **Reduces Radioactivity and Waste Volume**

- Thick liquid breeder jets and pool reduce radiation level at chamber \succ wall by ~2 orders of magnitude
 - Longer lifetime for chamber wall 0
 - Reduced radwaste volume 0
 - Reduced radioactivity level 0

Careful Choice of Chamber Wall Material Eliminates Generation of High-Level Waste

A-286 Steel WDR = 110

F82H Steel WDR = 0.9

A-286 steel99% Tc-99 (from Mo alloying element)F82H steel91% Nb-94 (from Nb impurity)
8% Tc-99 (from Mo impurity)

- A-286 steel generates high-level waste (WDR >> 1)
- F82H steel qualifies as LLW (WDR < 1)
- F82H is preferred steel based on activation consideration
- Controlling Nb and Mo **impurities** leads to a more attractive design

Recycling is a "Must" for RTL to Minimize Radwaste Stream and Enhance Economics

Recycling Flow Diagram

THE UNIVERSITY WISCONSIN MADISON

RTL Radwaste After Decomissioning is LLW and Can Be Cleared

LLW	WDR	Limits
Class C	10 -6 (³² Si)	1
Class A	10-4 (T, ¹⁴ C)	1

According to U.S. guidelines, RTL waste could be stored for 50 y after decommissioning, then reused within nuclear industry or released to commercial market Carbon steel RTLs generate very lowlevel waste (WDR << 1) and could qualify for clearance

Advanced Remote Handling Equipment Needed to Recycle RTLs

- Hands-on recycling not allowed.
- No personnel access to fabrication facility.
- Advanced remote handling equipment must be developed to handle 3000 Sv/h.
- ➢ Main contributors at 1 day: ⁵⁴Mn (90%, T_{1/2}=312.2 d)
 ⁵⁶Mn (9.6%, T_{1/2}=2.58 h).

Conclusions

Fusion power plants offer several attractive environmental features:

- Minimal greenhouse gas emissions
- Minimal radioactive releases
- No high-level waste
- Low-activation, recyclable/clearable materials
- No evacuation plan needed during accidents
- No energy and pressurization threats to confinement barriers
- Abundant resources can fuel fusion power plants for thousands if not millions of years
- Thick liquid breeder in Z-pinch chamber protects chamber wall, reduces radioactivity and waste volume, ensures tritium self-sufficiency, and recovers and multiplies fusion energy

Conclusions (Cont.)

Appropriate choice of low activation steel for chamber wall results in low-level waste

Recycling is a "Must" requirement for RTL to minimize radwaste stream and enhance economics

Carbon steel RTLs satisfy design requirements when recycled for entire plant life (40 FPY):

- Clearance index < 1

- Class A low-level waste \Rightarrow Near-surface shallow land burial

 \Rightarrow Store waste for 50 y after decommissioning, then reuse within nuclear industry or release to commercial market

Advanced remote handling equipment must be developed to handle dose rate of 3000 Sv/h or more