Addressing Challenges to Development of Laser Fusion Energy

Mohamed Sawan

Fusion Technology Institute University of Wisconsin-Madison

and the HAPL Team

Cairo 11th International Conference on Energy and Environment Hurghada, Egypt March 15-18, 2009

1

There are several ways to reach fusion conditions – all involve a plasma

High-density, high-temperature thermonuclear plasmas must be confined long enough for efficient fusion reactions to occur:

==> Net energy gain

Maxwellian Fusion Reaction Rates

D-T Fusion Represents a Nearly <u>WISCONSIN</u> Inexhaustible Energy Source

Fuels: Deuterium: abundant in sea water Tritium: Half-life~12 years...must be produced?

INERTIAL CONFINEMENT FUSION CONCEPT

Laser energy 💼

Inward transported Intermal energy

Atmosphere Formation

Laser or particle beams rapidly heat the surface of the fusion target forming a surrounding plasma envelope.

Compression

Fuel is compressed by rocket-like blowoff of the surface material.

Ignition With the final driver pulse, the fuel core reaches 1000 – 10,000 times liquid density and ignites at 100,000,000°C.

Burn

Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the driver input energy.

There Are Four Different ICF Target Designs

There are 4 Current ICF Drivers

Z-Pinch – Energy application depends on finding a credible rep-rate concept

Cairo 11th International Conference on Energy and Environment Hurghada, Egypt March 15-18, 2009

NIF Enabled by Rapid Advance in Laser Technology

The National Ignition Facility-1.8 MJ Laser

The High Average Power Laser (HAPL) team is developing the science and technology for a laser fusion energy.

Led by J.D. Sethian Naval Research Lab

19th HAPL meeting, October 22-23, 2008, UW-Madison, Wisconsin

Government Labs 1. NRL 2. LLNL 3. SNL 4. LANL 5. ORNL 6. PPPL	Universities 1. UCSD 2. Wisconsin 3. Georgia Tech 4. UCLA 5. U Rochester, LLE 6. UC Berkeley 7. UNC	Industry 1. General Atomics 2. L3/PSD 3. Schafer Corp 4. SAIC 5. Commonwealth Tech 6. Coherent 7. Onyx	9. 10. 11. 12. 13. 14. 15. 16. 17.	Voss Scientific Northrup Ultramet, Inc Plasma Processes, Inc PLEX Corporation APP Research Scientific Inst Optiswitch Technology ESLI
7. SRNL	8. Penn State Electro-optics	ð. DEI		

Fusion Energy with Laser Direct Drive

Why we believe direct drive with lasers can lead to an attractive power plant

Simplest (robust) target physics:

Simple spherical targets: facilitates mass produced '

Power plant studies show concept economically attractive

Separate components allows economical upgrades¹³

Target physics based on very large body of work in the US ICF Program

Only two main issues: Hydro stability & laser-target coupling Can calculate with bench marked codes

Both HAPL Lasers have demonstrated high energy, rep rate, long duration, operation.

- $\lambda = 248 \text{ nm}$
- 700 J max, 120 ns, 2.5-5 Hz
- > 250,000 shots cumulative
- 300 J, 2.5 Hz, 110 min (16 k shots)
- Predict >7% total efficiency
 (based on component development)

Mercury DPPSL Laser (LLNL)

- λ = 1051 nm
- 65 J max, 15 ns, 10 Hz
- > 300,000 shots cumulative
- 55 J, 10 Hz, 30 min (18 k shots)
- 73% Conversion to 2 ω

Final Optics: GIMM Damage threshold now 4 J/cm² @ 7 M shots We are also revisiting dielectric mirrors

Dielectric Mirror

EXP'T: Expose mirror systems to HIFR (ORNL Fission Reactor) Prototypical fluences and temp

RESULTS: HfO₂ / SiO₂ layers on Sapphire

Tilted Flat

Control

10²⁰n/cm²

Geometrical Model Used in 3-D Neutronics Analysis

Fast Neutron Flux Distribution in Final Optics of HAPL

The "first wall" of the reaction chamber must withstand the steady pulses of x-rays, ions and neutrons from the target.

High Average Power Laser (HAPL) Conceptual Design

Design with Magnetic Intervention

Large Chamber Design

Chamber Wall Experiments: Several facilities used to study effect of target emissions on first wall

Ion Implantation (in particular He) in Dry Chamber Wall is a Major Concern

- Can lead to exfoliation and premature failure of the armor (even for large chamber)
- Use of engineered armor
 - provide short pathway for implanted He to be released
 - microstructure could provide better accommodation of high thermal gradients
 - different possible concepts

Other solutions

- Magnetic intervention to steer ions away from main chamber
- Mobile C tiles: replacing or replenishing surface regularly

Example Case for 6x10²² He⁺/m² 40 kV, 60 mA Pulsed (1170<u>+</u>20°C baseline), 72 minute runtime on W armor (UW IEC Facility)

Solid Wall Chamber options Engineered Materials (the "scientific" solution) Mobile Tiles (the "live with it" solution)

Engineered Materials

High Porosity Tungsten Fiber/foam/nano-powder, etc)

Scale size less than He migration < 100 nm

Space allows material to "breathe"

Full Chamber Representation

Isometric view with lasers

Cairo 11th International Conference on Energy and Environment Hurghada, Egypt March 15-18, 2009

Laser Port Tiles

- These tiles traverse the chamber along a coolant rod (shown in blue)
- At the location of the laser ports, the tiles will rotate around the coolant rod by following a guiding rail on the coolant rod

Chamber Wall Tiles

For sections of chamber walls without laser beam penetration, larger tiles will be used

These tiles will traverse vertically through the chamber without the need to twist to open for lasers

Magnetic Intervention Divert lons off the wall (the "end run" solution)

1. Physics demonstrated in 1979 NRL experiment:

R. E. Pechacek, et al., Phys. Rev. Lett. 45, 256 (1980).

2. NRL experiment modeled by D. Rose at Voss Scientific

MI Concept proposed by A.E. Robson

Biconical Chamber Well Suited to Simple Cusp Coil Geometry and Utilizing SiC_f/SiC for Resistive Dissipation

- SiC_f/SiC blanket with Pb-17Li or flibe as liquid breeder (tight assembly of submodules), coupled to Brayton cycle.
- Water-cooled steel shield is lifetime component and protects the coil (can also be locally placed around coils).
- Although resistive dissipation of > 50% of the ion energy seemed possible, there were concerns about the high voltages generated between the blanket modules.
- Armored ion dumps schematically shown inside chamber, but preferably placed outside for easier maintenance access.

Different Features of IFE Systems

Significant geometrical, spectral and temporal differences between IFE and MFE systems affect radiation damage levels with impact on lifetime assessment

Geometrical differences:

Point source in IFE \Rightarrow Source neutrons in IFE chambers impinge on the FW/blanket in a perpendicular direction \Rightarrow For same NWL, lower radiation effects at FW with smaller radial gradient in blanket

Different Features of IFE Systems

Spectral differences:

- Fusion neutron interactions in compressed IFE target result in considerable softening of neutron spectrum incident on the FW/blanket in IFE chambers
- Softened source neutron spectrum with 10-13 MeV average energy depending on target ρR with some neutron multiplication (~1.05)

- Combined geometrical and spectral differences impact time-integrated radiation damage parameters
- Simple scaling of radiation effects with neutron wall loading between IFE and MFE systems is inappropriate

Pulsed Effects in IFE Systems

- In IFE chamber neutron source has a pulsed nature
- Energy spectrum of neutrons from target results in time of flight spread and backscattering from blanket extends period over which a particular radiation effect takes place
- Time spread is larger for radiation effects produced by lower energy neutrons (time spread of dpa larger than that for gas production and transmutation)
- Peak instantaneous damage rates in IFE FW/blanket are ~5 to 8 orders of magnitude higher than steady state damage rates produced in MFE systems
- Difference in time spread results in higher instantaneous He/dpa ratios in IFE systems compared to MFE systems
- Time dependent neutronics analysis is necessary for subsequent microstructure evolution analysis
- Analysis is underway to determine pulsed instantaneous damage parameters in SiC/SiC FW of HAPL and couple results with microstructure evolution analysis

Pulsed Damage parameters in HAPL FW

- Temporal peaking factor is significantly higher for He production than for atomic displacement (8.7x10⁷ vs. 1.1x10⁷)
- Peak instantaneous He/dpa ratio is much higher than that determined from the temporal average (cumulative) values (368 vs. 47)

Overall Chamber and Reactor Concept with Bell Cusp Configuration

- Two laser lines intersect the dump chamber region.
 - Vapor pressure prior to each shot should be low enough not to impact the laser propagation.
- The closest FW region to the center of the chamber is 4.5 m with a corresponding neutron wall load of 5.4 MW/m².
- Both blanket concepts considered for the biconical chamber could be utilized in this configuration
 - TBR >1.1 (with 7.5-10% ⁶Li and including loss of coverage due to ports and cusp openings).
- Other nuclear requirements also accommodated.
 - a combined blanket/shield thickness of 1.25 m.
 - a vacuum vessel thickness of 10 cm.
 - FS shield and VV are lifetime components with peak end-of-life radiation damage <<200 dpa.
 - VV is reweldable with peak end-of-life He production <1 He appm.
 - Magnets are lifetime components with peak fast neutron (E>0.1 MeV) fluence <10¹⁹ n/cm² and peak insulator dose <10¹⁰ Rads.

Cairo 11th International Conference on Energy and Environment Hurghada, Egypt March. 15-18, 2009

Evaporation/Condensation Studies for Bell Cusp

• Three candidate fluids were considered for the dump chamber: Pb, Sn and Ga

Conclusions

- There is a substantial world research program (≈ 2 \$B/y) to harness Fusion as a major environmentally friendly energy source in the 21st Century with nearly inexhaustible resources
- While most of the world program is concentrated on magnetically confined plasmas, the inertial fusion program will probably reach ignition and breakeven first
- Direct drive laser fusion has several attractive features for energy production
- On-going R&D activities are addressing the challenging technical issues for development of laser fusion energy