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» Overview of the Time of Flight (TOF) diagnostic.

« Update on the applicability of the Fusion lon DOppler
(FIDO) diagnostic.

 Using the TOF diagnostic to determine the velocity
distribution function of the deuterium reactants.

* Applying a weighting factor to account for geometrical
effects of the diagnostic.

 Putting it all together to determine the underlying fusion
profile in HOMER.

« Experimental advances and future work.



@ The TOF system consists of charged particle

W detectors on opposing magnetic bending arms
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*The d(d, p)t reaction emits particles in opposite directions, which can be captured
coincidentally by the two detectors.

*The time between particle captures (At) is recorded along with the energy of each particle
(E, and E)).



@ The energy and timing information specifies  @o
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% The goal Is to describe the total fusion spatial g

L4 proflle across the entire 3-D volume

 Several pieces of information must be known to a
high degree of accuracy.

1. 1-D spatial distribution of fusion events.
« TOF diagnostic.

2. Deuterium velocity distribution function.

« [t was thought previously that the FIDO diagnostic
provided this, however this is not quite accurate.
3. Geometrical weighting factor that accounts for the
probability for a fusion event to be coincidentally
captured from a given point in the volume.

e Computational mock-up of the device geometry.



2% The FIDO diagnostic cannot define the oy

A\ veloc:lty distribution function (VDF) \W’

| Fusion proton energy distribution centered
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Boris, et al. Measuring D(d,p)T fusion reactant
enerqy spectra with Doppler shifted fusion products
J. Appl. Phys. 107, 123305 (2010) 6




@ The TOF system can generate the VDF

% because it observes both fusion products

« Assuming all deuteron
trajectories are radial

— We can define a range of \ | /
possible angles 0 between o
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« Within the error of the measurements we can then
solve for the approximate center of mass velocity of
the fusion reaction at its given location — VDF.



% The TOF system can generate the VDF %)

N\ // because It observes both fusion products \\W/
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#% The raw VDF has nearly uniform structure

WY across the device, even in the “wings”

Cathode voltage: -60 kV, Cathode current: 30 mA, 2 mTorr (0.267 Pa) D,
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3500 counts taken over 45 hours of
run time by David Donovan

Some fusion events are observed
inside the collimator channels of the
TOF system




o The raw VDF has nearly uniform structure

\
WY across the device, even in the “wings”

Cathode voltage: -60 kV, Cathode current: 30 mA, 2 mTorr (0.267 Pa) D,
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Hypothesis: The VDF in the
wings is not peaked at a
higher energy than the core
suggesting that the wings
are not due to higher energy
negative ions.




oo We still need to account for the acceptance g

WY cone geometry’s effect on recording counts

Geometrical Weighting Factor — Inward Particles
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Fusion products emitted
from certain regions
cannot be captured by
both detectors

— Example: fusion events at
the center of the device
with center of mass
velocities perpendicular to
the detector axis cannot be
observed by the TOF

z—position [em]  \yeighting factor shown is summed over
all deuteron energies from 0-100 keV 9



oo We still need to account for the acceptance g

WY cone geometry’s effect on recording counts

Geometrical Weighting Factor — Outward Particles

 Fusion products emitted
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with center of mass
velocities perpendicular to
the detector axis cannot be
observed by the TOF

o W +

Radius from Detector Axis [cm]

[u—
T

20 40
z—position [em]  \yeighting factor shown is summed over
all deuteron energies from 0-100 keV 9




@ We still need to account for the acceptance

WY cone geometry’s effect on recording counts

Geometrical Weighting Factor — All Particles
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3 Applying the Weighting Factor (WF) to the g

WYY/

M/ VDF gives the underlying 1-D fusion profile ¥

« Summing the weighting
factor over r at each z-
position gives the 1-D WF
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oo Applying the Weighting Factor (WF) to the

‘W VDF gives the underlying 1-D fusion profile

Underlymg Fusion Proﬁle Across HOMER
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oo Adjustable bending arms reduce X-ray noise g

W and allow for d-He3 and negative ion studies

 Large x-ray trap allows
Incoming x-rays to spread
out some upon exiting the
collimator channel

 Adjusting to larger angles
further reduces x-ray
scatter into the detectors

 Additional angles provide
for study of higher energy
d-He3 protons and
negative ions




W Conclusions

« The FIDO diagnostic cannot provide the velocity
distribution function (VDF) as required

» The TOF diagnostic can determine the spatial
fusion profile In HOMER and the VDF

» Applying a geometrical weighting factor to the
VDF reveals the underlying fusion profile

« Adjustable TOF arms reduce noise and allow for
additional fusion reaction studies
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(m) Some future upgrades for HOMER

N\ %4

 Cooled Si-detectors using thermocouples.
— Reduce leakage current and maintain energy resolution.

* |n situ energy calibration of the Si-detectors
— Am-241 source to ensure that the detector iIs calibrated.

« Mobile emissive probe to measure the voltage profile
between the anode and the walls.
— Potential leakage may support fusion outside the core.

 Study of various cathode/anode diameter combinations
and effects on the wings.
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