

Z-Pinch Chamber Assessment and Design

L. El-Guebaly, M. Sawan, I. Sviatoslavsky, P. Wilson, G. Sviatoslavsky, and G. Kulcinski Fusion Technology Institute University of Wisconsin - Madison http://fi.neep.wisc.edu/UWNeutroniscCenterOffExcellence

With contributions from: C. Olson, G. Rochau, B. Cipiti, S. Rodriguez (SNL), S. Zinkle, R. Klueh (ORNL), S. Malang (Germany)

17th ANS Topical Meeting on the Technology of Fusion Energy November 13 – 15, 2006 Albuquerque, NM

Z-Chamber & Areas of Research

Objectives

- Perform engineering scoping assessment for two candidate breeders: ٠ Flibe and LiPb.
- Develop list of engineering design requirements and radiation limits to guide ٠ design process.
- Explore design space using 1-D parametric study. •
- Identify self-consistent parameters for candidate breeders and chamber wall • materials based on 3-D nuclear assessment:
 - Breeder and wall dimensions
- Isochoric heat load
- Overall TBR and Li enrichment
- Overall energy multiplication
- Damage profile @ chamber wall Thermal, gross and net electric powers
- Wall lifetime
- Breeder volume and cost.
- Assess activation and waste classification of chamber wall for two candidate steels: A-286 and F82H.
- Compare Flibe and LiPb systems.

3

Design Requirements and **Radiation Limits**

Overall TBR (for T self-sufficiency)	1.1	
Nuclear Heat Leakage from Chamber Wall (to enhance power balance)	1%	
dpa to Structure * (for structural integrity and service lifetime)	200	dpa
Reweldability Limit	1	He appm
Low-Level Waste - Class A or C WDR	≤1	
Plant Lifetime	40	FPY
Projected Plant Availability	85%	

^{*} Thermal creep and stresses may limit structure lifetime.

Total breeder volume and overall cost are comparable

^{*} M. SAWAN, L. EL-GUEBALY, and P. WILSON, "Three-dimensional Nuclear Assessment for the Chamber of Z-Pinch Power Plant," Nuclear Analysis and Experiment Session, Wednesday at 1 PM.

^{@ 100%} dense breeder; 10 units. Pool dominates volume.

[#] Inside and outside the chambers. Assuming outer loop contains same breeder volume as in all 10 chambers.

Chamber Wall Parameters

(3-D Nuclear Parameters^{*})

	Flibe	LiPb	
Wall thickness (cm)	30	50	
Peak dpa @ EOL	200	200	
Lifetime [*] (FPY)	10 - 40	6 - 40	
Top reweldable?	No	No	
Waste classification	HLW - LLW -	A286 steel F82H steel (with	h impurity control)
Waste volume (m ³) - 10 units:			
Replaceable components (6-20 FPY)	150	480	
Permanent components (40 FPY)	630	1060	
Total	780	1540	
Building volume (m ³)	$\sim 2 \ge 10^5$	$\sim 2 \ge 10^5$	
• LiPb chamber generates more	e radwaste		
• 10 chamber walls represent of	only 1% o	f building vo	olume.

⁴ M. SAWAN, L. EL-GUEBALY, and P. WILSON, "Three-dimensional Nuclear Assessment for the Chamber of Z-Pinch Po Nuclear Analysis and Experiment Session, Wednesday at 1 PM.

11

Establishing Jet Flow

- Design reservoir on top of chamber with amount of fluid adequate to supply jets for single shot.
- Mechanism such as sluice valve can release fluid in 1-2 s.
- Valve is rotated several degrees of revolution, releasing fluid to jet holes, initiating jet flow.
- As valve closes, new fluid from pool is pumped into reservoir behind valve in preparation for next shot.

Thermal Parameters

	Flibe	LiPb
Starting temperature in pool (C)	530	275
Energy dissipated in jets (GJ)	2.685	2.692
Energy dissipated in pool (GJ)	0.661	0.868
Temperature rise in jets per shot (C)	38.5	54.3
Temperature rise in pool per shot (C)	2.9	6.86
Equilibrated temperature rise per shot (C)	8.65	20.22
Power cycle	Brayton	Rankine
Liquid temperature to heat exchanger (C)	680	450
Thermal power supplied by each chamber (MW _{tb})	334.6	356.0
Power cycle efficiency (%)	43.5	41.9
Electric power less pump power (MW _e)	144.2	139.3
for each chamber		

13

Breeder Comparison

	Flibe		LiPb	
Steel type	F82H	ODS ^{#*}	F82H	ODS ^{#*&}
Steel T _{max}	700°C	800°C	550°C	800°C
Breeder/steel interface T _{max}	~700°C	< 800°C	500-550°C	< 800°C
Breeder T _{out}	680°C+	750-800°C+	< 550°C@	750-800°C+
η_{th}	40-45%	~50%	40-45%	~50%
P_{th} (MW _{th} /chamber)	335	335	356	356
Gross P _e (MW _e /chamber)	134-151	~168	142-160	~178
Pumping power (MW,/cham.)	2	2	12	12
P _e (MW _e /chamber)	132-149	~166	130-148	~166
P_{G} (10 units)	1320-1490	~1660	1300-1480	~1660
P _e ^{**} (10 units)	900-1070	~1240	880-1060	~1240
Need cleanup system?	ye	es	ı ye	s

Advanced oxide dispersion strengthening (ODS) steel with nano-sized TiO₂ and Y₂O₃ particles, offering high operating temp and strength. Assuming 200 dpa limit @ 800°C.
* If plated with 1 mm W (or Ta) or coated with 10 microns alumina; W nozzles.
@ Rankine power conversion cycle (for T < 600°C).
+ Brayton power conversion cycle (for T > 650°C).
** Assuming 170 MW_e driver power, 200 MW_e for RTL fabrication plant, 50 MW_e miscellaneous power, totaling 420 MW_e.
& Oxygen in LiPb should be excluded or minimized.

(for REDOX chemistry control and separation of RTL/target debris)

(to limit Bi and Po concentrations and separate RTL/target debris)

Cleanup Systems Needed for Flibe and LiPb

Flibe:

- Flibe dissociates under irradiation and has a compatibility problem with FS if radiolysis byproducts cannot be controlled by chemical means.
- Neutrons interact with Flibe and produce extremely **corrosive free fluorine** and the less corrosive **tritiated hydrofluoric acid** (TF).
- A reduction and oxidation (**REDOX**) agent, such as beryllium, is essential for the viability of Flibe to control free fluorine and TF and minimize corrosion.
- Experimental work on REDOX to limit corrosive effects of F and TF is being performed at Idaho National Laboratory as part of US-Japan Jupiter-II program.

LiPb:

- Neutrons interact with Pb and Bi, producing ²¹⁰Po and ²⁰³Hg.
- **Controlling Bi impurity** can limit ²¹⁰Po inventory.
- Online purification system is necessary to remove ²¹⁰Po and/or ²⁰⁹Bi.

15

Pros & Cons of Flibe

Advantages

- Good shielding performance
- Light weight
- Low pumping power (2 MW_e per chamber)
- Low-pressure operating system
- Very low tritium solubility; low tritium inventory
- Relatively inert with air and water.

Disadvantages

- Higher unit cost than LiPb
- High melting temperature (460°C); small temperature window with F82H steel
- High viscosity
- Tritium permeation and control is a serious issue
- Low thermal conductivity
- Limited heat transfer capability
- Very corrosive in radiation environment
- REDOX chemistry control is needed
- Very steep radial power profile and large temperature gradient
- Pool shoots up at high speed (> 750 m/s), hitting remaining RTL
- Limited database.

Pros & Cons of LiPb

Advantages

Disadvantages

- Lower T partial pressure than Flibe
- Low tritium solubility; low tritium inventory
- Generate more thermal power than Flibe
- React mildly with water
- Higher heat conductivity than Flibe
- Less steep radial power profile and
- temperature gradient than Flibe
- Suppress shock wave; pool may hardly move
- Lower melting temperature (234°C); large temperature window
- Lower unit cost than Flibe
- Large database from ITER and Gen-IV

- Lower shielding performance compared to Flibe
- Heavy weight
- 12 MW_e pumping power per chamber
- Tritium permeation and control is an issue
- Need online Po and/or Bi removal system
- Corrosive

WISCONSIN

Conclusions

- Engineering requirements and constraints have been developed for Zchamber.
- Nuclear performance has been assessed using combination of 1-D and 3-D analyses.

17

- A mechanism called a sluice valve is proposed for quickly initiating and terminating jet flow in chamber.
- Both Flibe and LiPb breeders are technically feasible for Z-pinch concept, breeding sufficient tritium and protecting chamber wall.
- Net electric power and breeder cost (that influence COE) are comparable.
- The chemistry control by REDOX tops the list of critical issues for Flibe. Its dissociation under Z-pinch operating conditions needs further evaluation.
- Bi and/or Po control system is required for the LiPb option.
- Flibe moves violently after target implosion. LiPb offers unique advantage as pool may hardly move.
- A-286 steel generates high-level waste ⇒ employ F82H or ODS steel (with controlled Nb/Mo impurities) for more environmentally attractive design.