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Why Tungsten Shell?

• Per Kessel:
             (Shell thickness (in cm) / Resistivity (in Ohm.cm) )  >  15,000

• Tungsten: preferred material for ARIES stabilizing shells:
• Reasonable resistivity (ρ) and shell thickness (~0.08 cm for ρ= 5.4 micro Ohm.cm @ RT)
• High temperature operation (800 - 1200oC)
• No active cooling

           ⇒ radiate heat to surrounding blanket and shield
           ⇒ simple shell design.

• Impact on tritium breeding depends on shell location within blanket.
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Concerns

• W resistivity increases with:
– Temperature
– Neutron irradiation.

• Higher resistivity means thicker stabilizing shell.

• Concerns:
– Impact on TBR
– Temperature gradient within shell
– Thermal stresses
– Feasibility of radiative cooling?
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Unirradiated W:
Variation of Resistivity with Temperature*

• Electric resistivity of unirradiated W is well established.
• W resistivity (in micro Ohm.cm):

ρW = 4.8 (1 + 4.8297e-3 T + 1.1663e-6 T2) for 25oC < T < 625oC

Ref: M. Billone’s memo to ARIES Team on “Electrical Resistivity of Tungsten,” (5/27/1996).
               Available at: http://www-ferp.ucsd.edu/LIB/PROPS/w.html
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At 1000oC, ρW increases 6 times,
requiring ~0.5 cm thick W shell
(> 0.08 cm thick shell at RT).
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Tungsten Composition Changes
with Neutron Irradiation

• Some W atoms transmute into Re, Ta, Os, and other radioisotopes (see my
5/2010 presentation).

• Transmutation level depends on irradiation time and neutron spectrum (hard
near FW or soft behind blanket).

• Example of W transmutations: W armor of ARIES divertor :

• Main transmutation products (Re, Ta, and Os) will increase W electrical
resistivity further, requiring thicker W shell.
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Variation of Resistivity of
Transmutation Products with Temperature*

• W, Re, Os, Ta resistivities (in micro Ohm.cm):
W ρW = 4.8 (1 + 4.8297e-3 T + 1.1663e-6 T2) for 25oC < T < 625oC
Re ρRe = 17.7 (1 + 4.5585e-3 T + 1.2447e-6 T2) for 25oC < T < 900oC
Os ρOs = 9.49 (1 + 4.425e-3 T) for 0oC < T < 100oC
Ta ρTa = 12.45 (1 + 3.83e-3 T)  - Ref. 2 - for 25oC < T < 100oC

Note errors in

Billone’s m
emo:

marked in red

Refs.: 1- M. Billone’s memo to ARIES Team on “Electrical Resistivity of Tungsten,” (5/27/1996).
               Available at: http://www-ferp.ucsd.edu/LIB/PROPS/w.html
           2- CRC Handbook of Chemistry and Physics - 66th Edition (1985-1986).
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Linear variations assumed for Ta and Os
at T > 100oC. Parabolic variation yields
higher resistivity.

Q: How much Re, Ta, and Os in W shell?
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Re, Ta, Os Atomic Fractions Estimated
using ALARA Activation Code

• Two locations examined for W shells in ARIES-DB:
I-  0.5 cm thick W shell behind OB FW
II- 0.5 cm thick W shell between OB blanket segments.

• Two lifetimes considered: 3.4 FPY and 40 FPY.
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Transmutation Products in
ARIES-DB W Shell
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• W Shell-I (behind FW) generates highest transmutation products.
• Transmutation products build up with irradiation time.
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Change of W Electrical Resistivity
with Transmutation Products

• Experimental data for irradiated W with 14 MeV neutrons does not exist.

• Per Billone, electrical resistivity of irradiated W can be estimated by
law of mixtures:

                      ρ = fW ρW + fRe ρRe + fTa ρTa + fOs ρos
  

where f = atomic fraction.
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Change of W Shell Resistivity
with Irradiation and Temperature

W Shell-I behind OB FW W Shell-II between 
OB Blanket Segments
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Impact of Change in W Resistivity on
W Shell Thickness

W Shell-I behind OB FW W Shell-II between 
OB Blanket Segments

Δshell = 15,000 ρshell 
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Could LiPb Serve as Stabilizing Shell?

• At 700 oC, ρLiPb ~150 micro Ohm.cm*      ⇒   2-3 cm LiPb
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•Options:
–Encase 2-3 cm thick LiPb in FS structure to serve as stabilizing shell
–Cool FS structure with He to remove nuclear heating
–Place LiPb Kink shell behind FW to enhance physics
–T removal in batch process
–Flowing LiPb?
–Start with solid LiPb?

•UW experimental Na loop at Forest’s lab could assess feasibility.
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Conclusions

• W shell thickness should reflect change in resistivity with temperature and
irradiation.

• Change due temperature is dominant.

• Kink shell behind FW offers physics advantages, but exhibits largest change
in resistivity.

• TBD: Impact of shell on ARIES-DB TBR.
          Need location and thickness of both shells.

• Q: Could “2-3 cm LiPb encased in FS structure” serve as stabilizing shell?


