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Rationale

• Plant with 1 GW fusion power consumes huge amount of T (55.6 kg per full power year).

• T bred in blanket should be accurately estimated as 1% uncertainty translates into 1-2
kg of T/FPY for 2-3 GW Pf.

• Shortage of T significantly impacts plant operation.

• Surplus of T introduces T storage problem.

• For licensing considerations, fusion should not generate excess T than needed for
plasma fuelling and start-up inventory for new power plant.

• To avoid T shortage, Calculated TBR must exceed unity by adequate margin, but
blanket should not generate excess T.

⇒  narrow tritium operating window
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Rationale (Cont.)

• Net TBR during plant operation could be as low as 1.01 in advanced designs,
much lower than the Calculated TBR.

• Dedicate R&D program will reduce difference between Calculated TBR and
Net TBR. However, remaining uncertainties could still be significant for
Demo operation.

• Early generations of fusion plants may require Net TBR > 1.01 for shorter
doubling time.

• Mature fusion system may call for 1.002 < Net TBR < 1.01.
• Fusion plants may not operate in uniform manner, generating more/less T

during operation according to:
– Need for variable doubling time (Td)
– Need for higher/lower breeding over certain time period (with the same integral

amount of T over blanket lifetime)
– Availability of T recovered from detritiation system
– Evolution of T inventory with time.
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Rationale (Cont.)

• For these reasons, T bred in blanket must be adjusted online – relatively easy task for liquid
breeders (through 6Li enrichment), but difficult to envision for solid breeder blankets*.

_________
* Ref: L. El-Guebaly and S. Malang, Toward the ultimate goal of tritium self-sufficiency: technical issues and requirements imposed on ARIES advanced fusion

power plants, Fusion Engineering and Design, in press.

At t=o, external T inventory for start-up (Tstart-up) available in getters
I - T generated in blanket not available (trapped in breeding material and structure) 
II - T for fuelling taken from Tstart-up   
III - Plasma exhaust fed into fuel reprocessing system. Some T stored in getters
IV - T starts to recover from blanket
V - Inventories in all systems reach equilibrium. Time of leveling off is uncertain
VI - T in getters decreases from Tstart-up to minimum of 1-d reserve 
VII - T in excess of fuelling stored in reserve storage
VIII - T stored equals to sum of Tstart-up and T1-d reserve
IX - Delivery of Tstart-up to new plant at doubling time. This time may shift up/down
Strict control of both curves is only possible through online adjustment of breeding
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Key Questions

• How high should Calculated TBR be?              Design and breeder dependent

• What elements determine breeding margin (Calculated TBR-1) ?
 Four main elements

• Does this margin evolve with time?                                                              Yes

• Could T breeding be adjusted online?
Yes, for liquid breeders through 6Li enrichment

• Should design over-breed or under-breed?                  Less risky to over-breed
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Calculated TBR Evolves with Time and
is Design and Breeder Dependent

• There is no general consensus within fusion community on what the Calculated TBR
should be.

• Advanced ARIES designs considered Calculated TBR of 1.1 for liquid breeders
• Other US projects (IFE HAPL @ NRL, Demo @ UCLA, IFE @ LLNL) along with

some EU and JA studies accord with ARIES 1.1 Calculated TBR .
• Some designs call for higher Calculated TBR with Net TBR of ~1.05.
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Breeding Margin
 (Calculated TBR – 1)

Can be divided into 4 distinct categories:
• Margin for known deficiencies in nuclear data  (6-10%)
• Margin for known deficiencies in modeling (3-7%)
• Margin for unknown uncertainties in design elements (0-3%)
• Margin for T bred in excess of T consumed in plasma (1-2%)
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breeder dependent
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Margin for Known Deficiency in
Nuclear Data (6-10%)

• T production is highly sensitive to neutron energy spectrum that is controlled by nuclear data
evaluation for numerous isotopes (e.g., 20-30 isotopes in ARIES blankets) and cross-sections,
not only (n,t).

• Several organizations in US, EU, and JA developed nuclear data libraries for fusion applications.

• IAEA FENDL library is widely used worldwide as data were carefully selected from several
national libraries.

• Despite high fidelity in IAEA evaluation, FENDL-2.1 version is far from perfect. Issuing new
version takes years of extensive experimental program combined with data re-evaluation, then
data validation. 

• Impact of uncertainties in nuclear data evaluation on calculated TBR was assessed numerically
@ UCLA for several breeders  (~6% for LiPb).

• Few integral experiments (with 14 MeV neutron source) exist in JA and EU to validate nuclear
data.

• New experiments are underway in JA and EU for helium-cooled LiPb blanket (more relevant to
ARIES).

• Several iterations between data evaluation and experimental validation will continue until good
agreement is reached.

• ARIES will continue to include adequate breeding margin (~6%) in Calculated TBR of LiPb
system to account for nuclear data deficiency until JA and EU conduct LiPb experiments,
benchmark, and publish results.
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Margin for Known Deficiency in
Nuclear Data (Cont.)

Solid breeder experiments:

• Recent FNS results for
Li2TiO3/Be/FS blanket
indicated calculations
overestimate T production
rate by up to 10-20%.

• FNG experiment indicated T
production is predicted within
5-10% uncertainty for solid
breeding blankets with Be
multiplier.

FNG Facility (ENEA, Italy)

FNS Facility (JAEA, Japan)
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Margin for Known Deficiency in
Modeling (3-7%)

Non-uniform
Blanket

Uniform
Blanket

Shield

Manifolds

Divertor

Example: UW CAD/MCNPX approach
applied to ARIES-CS

• Calculating TBR for any fusion system requires advanced neutronics tools.
Newly developed CAD-MCNPX approach  provides such capability.

• Ideally, 3-D model should include essential components
that impact breeding significantly: FW, blanket, divertor,
stabilizing shells, penetrations, and assembly gaps.

• Practically, 3-D model cannot represent real geometry, particularly complex blanket
designs as very detailed blanket is too costly to model.

• Homogenization overestimates breeding level and 3-D Calculated TBR should be
adjusted accordingly.

• Margin of error in Calculated TBR due to modeling could range between 3 and 7%,
depending on how crude 3-D model is.
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Margin for Unknown Uncertainties in
Design Elements (0-3%)

• Normally, TBR is calculated for conceptual designs where major elements that
degrade breeding (such as FW, blanket structure, stabilizing shells, and
penetrations) are included in 3-D model.

• As design develops further approaching construction phase, several future design
changes may negatively affect breeding, calling for larger breeding margin during
conceptual phase.

• Such changes include:
– Adding few mm W armor on FW to enhance plasma performance and/or withstand

off-normal events
– More supporting structure for FW and blanket
– Thicker SiC insulator for DCLL blanket concept
– Larger stabilizing shells
– Sizable penetrations
– Wider assembly gaps.

• In ARIES, no provision was made to account for future design changes.

• Such changes will require higher enrichment and/or redesigning blanket to meet
strict breeding requirement.
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Margin for
T Bred in Excess of T consumed* (1-2%)

• Divided into three main categories:
1. T required to provide start-up inventory for new fusion power plant:

a. T build-up in power core materials (especially in breeder, multiplier,
structural materials) and T recovery system for blanket

b. T build-up in fuel reprocessing system (especially in cryo-panels, getters,
molecular sieves)

c. T build-up in detritiation systems for coolants, building atmosphere, and
vacuum pumping system

d. T to be stored in getters as reserve to continue plasma operation in case of
temporary malfunctions of T reprocessing system

2. T necessary to compensate for decay of total T inventory
3. T lost to environment (atmosphere, cooling water, etc.).
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D and Plasma
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Storage
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T
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T

Fueling
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Isotope
Separation

System

D-T Pellets

T_________
* Ref: L. El-Guebaly and S. Malang, Toward the ultimate goal of

tritium self-sufficiency: technical issues and requirements
imposed on ARIES advanced fusion power plants, Fusion
Engineering and Design, in press.
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Margin for
T Bred in Excess of T consumed (Cont.)

ARIES-CS ARIES-AT
Net output power (MWe) 1000 1000
Fusion power (MW) 2436 1759
Burn-up fraction of T in plasma 12.4% 36.4%
T consumption: in kg/FPY 135 97.8
                           in kg/day 0.37 0.268
T throughput (kg/day) 3 0.74
T holdups in LiPb breeder (kg) 0.1 0.1
T holdups in structure (kg) ~1 ~0.8
T inventory in reprocessing system (kg) 1.5 0.37
T build-up outside FPC (kg) 0.5 0.5
Stored T for malfunctions (kg) 1 0.25
T decay (kg/y)   0.33 0.16
T losses to environment (g/y) < 4 < 4
Start-up inventory (kg)   ~4 ~2
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Net TBR (~1.01)

Early generations of fusion plants require Net TBR > 1.01 with
shorter doubling time (needed to supply new power plant with
start‐up T).
Mature fusion plants call for Net TBR ≤ 1.01.

Advanced physics and technology help keep Net TBR around 1.01
Essential requirements include:

– T burn-up fraction in plasma exceeding 10% (with high T recycling rate)
– High reliability and short repair time (< 1 day) for T processing system
– Three or more T processing system
– Low T inventory in all subsystems
– Extremely low T losses to environment (< 4 g/y).
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Over-Breeding or Under-Breeding?

• Net TBR will not be verified till after Demo operation with fully integrated blanket
and T extraction and processing systems.

• Existing blanket will be redesigned accordingly.
• All blankets should be flexible and accept few changes to deliver a Net TBR of 1.01.
• Over-breeding blanket (Net TBR > 1.01):

– For liquid breeders, most practical solution is to adjust the 6Li enrichment online,
– For ceramic breeders, adjust 6Li enrichment after first blanket change-out or replace few breeding modules

by shield.

• Under-breeding blanket (Net TBR < 1.01):
Major design changes anticipated to raise TBR, unless reference blanket designed with 6Li enrichment < 90%:

• Thickening blanket,
• Replacing W stabilizing shells of ARIES-AT by Al or Cu shells,
• Lowering the structural content within the blanket,
• Adding a beryllium multiplier to the blanket,
• Increasing plasma aspect ratio,
• Operating tokamaks in a single-null mode (4-5% additional breeding).

• It is less risky to design over-breeding blanket (with Net TBR of 1.01 - 1.02) and
develop feasible scheme to adjust breeding shortly after plant operation.

• Surplus of T could be excessive if Net TBR exceeds 1.01.
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Excessive Breeding (Net TBR >1.01)
Introduces T Storage Problem

• Without online adjustment of breeding,
surplus of T generated over blanket lifetime
(~5 y) would be significant  if  Net TBR
exceeds 1.01 (after subtracting start-up
inventory for new plant (with 5 y doubling
time) and account for T decay).

• For comparison, total T accumulated from all
CANDU reactors will reach ~30 kg by 2025.

• T breeding should be controlled with
accuracy better than 1% to ensure T self-
sufficiency without storage problem for
surplus of T.
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Proposed Scheme for
Online Adjustment of LiPb Breeding

• Two practical methods are feasible through
combining two LiPb eutectics with different
enrichments:

a) Replace X tons of enriched LiPb by X tons of LiPb
with 100% 7Li

(straightforward but requires additional storage for LiPb
eutectic with 100% 7Li).

b) Remove Z tons of enriched Li from LiPb eutectic
and replace it with Z tons of 7Li

(does not require large storage, but needs practical method* to
remove Z tons of enriched Li from eutectic and feed back Z
tons of 100% 7Li to eutectic).

Example of
Over-breeding

Blanket

X X
LiPb with 
100% 7Li

LiPb with 
70% 6Li

LiPb

(Y + Z) 6Li
+

W 7Li

LiPb

Y  6Li
+

(Z + W) 7Li

_________
* H. Feuerstein, D.A. Wirjantoro, L. Hoerner, S. Horn, Eutectic mixture Pb-17Li - in-situ production and Li-adjustment, Fusion Technology 2 (1994) 1257-1260.

P. Hubberstey, M.J. Capaldi, F. Barbier, Replenishment of lithium lost from Pb-17Li, Fusion Technology 2 (1996) 1475-1478.
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Impact of Design Elements on
Breeding Capacity*
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Impact of Design Elements on
Breeding Capacity (Cont.)
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Interesting Question

Assuming unlimited funding,
how long would it take to supply US electricity (1000 1-GWe fusion plants)

based solely on ability to generate enough T to fuel new plants?
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Interesting Question (Cont.)
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Conclusions

• No universal breeding margin (Calculated TBR - 1). It is breeder and design-
dependent, evolves with time, and accounts for:
• Know deficiencies in calculated TBR due to data and 3-D modeling
• Unknown uncertainties in design elements
• Possible malfunctions during plant operation
• Start-up T supply for new power plant.

• Dedicated R&D program will reduce breeding margin before Demo operation.

• Must requirements for fusion power plants include:
– 3-D Calculated TBR > Net TBR
– Net TBR very close to unity to ensure sufficient T supply without excessive T surplus
– LiPb blanket parameters determined for 6Li enrichment < 90%

– Online adjustment of breeding (feasible for liquid breeder blankets, but difficult to
envision for solid breeder blankets).

• Ability to adjust Li enrichment during operation mitigates concerns about:
– Danger of placing plant at risk due to T shortage
– Problem of handling T surplus.


