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Background Info

• D-T fusion is easiest to achieve
but produces large amount of
energetic neutrons

• Neutrons activate materials
surrounding plasma

• Proper choice of materials
reduces radioactivity

• Researchers explored fuel cycles
other than D-T to alleviate
fusion radwaste problems.
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FTI Developed and Actively Participated in
33 MFE & 24 IFE Studies during ~40 y
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Over Past 20 y, Multi-Institutional ARIES Team
Developed > 10 Advanced Designs
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Fusion Demonstrates Adequate Performance
in Several Safety and Environmental Areas

Environmental impact:
– Minimal radioactive releases# during normal and abnormal operations.
– Low activation materials with strict impurity control
               ⇒  minimal long-term environmental impact
– Minimal low-level waste (LLW)
– No high-level waste (HLW)

Occupational and public safety:
– No evacuation plan following abnormal events (early dose at site boundary < 1 rem*)

to avoid disturbing public daily life.
– Low dose to workers and personnel during operation and maintenance activity

(< 2.5 mrem/h).
– Public safety during normal operation (bio-dose << 2.5 mrem/h) and following credible

accidents:
• LOCA, LOFA, LOVA, and by-pass events.
• External events (seismic, hurricanes, tornadoes, airplane crash, etc.).

No energy and pressurization threats to confinement barriers (VV and cryostat):
– Decay heat problem solved by design –   Chemical energy controlled by design
– Chemical reaction avoided –   Overpressure protection system
– No combustible gas generated –   Rapid, benign plasma shutdown.

______________________________
* 1 rem (= 10 m Sv) accident dose stated in Fusion Safety Standards, DOE report, DOE-STD-6002-96 (1996).
#  Such as T, volatile activated structure, corrosion products, and erosion dust. Or, from liquid and gas leaks.
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Options for Radwaste Management

• Disposal in space

• Ice-sheet disposal

• Seabed disposal

• Transmutation of long-lived radionuclides (⇒ proliferation concerns)

• Geological disposal (preferred US option over past 50 y)

• Recycling / reprocessing (reuse within nuclear industry)

• Clearance (release to commercial market if materials are slightly radioactive)
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NRC Classification of LLW and HLW

US Classification of radwaste:
– HLW (e.g., transuranics, 94Nb
                    14C, etc.; active > 5,000 y)
– LLW*:

Class A - safe after 100 y
Class B - safe after 300 y
Class C - safe after 500 y

Fusion should:
•  Maximize Class A LLW
•  Minimize Class C LLW
•  Avoid HLW

______________
#   Cost of preparation, characterization, packaging,
   interim storage, transportation, licensing, disposal, 
   and monitoring. 
*  From fusion, research labs, hospitals, 
    food irradiation facilities, etc.
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Fusion Generates Only LLW

All fusion materials are carefully chosen to minimize long-lived radioactive
products (e.g., low-activation ferritic steel (FS), vanadium, and SiC structures)
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Status of Geological Disposal

• Worldwide operational, commercial repositories:
US Europe Japan

LLW 3 6 1
HLW --- --- ---

• Currently, LLW represents ~ 90% of radwaste volume

• Largest US repository (Barnwell in SC) may limit LLW received in July 2008

• Several states tried to develop new disposal sites, but changed their mind because of
strong opposition from public and environmentalists

• At present, many US utilities store LLW and HLW on site because of limited and/or
expensive offsite disposal options

• As near-term solution, DOE opened its disposal facilities to commercial LLW
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4-5 Large-Scale Repositories in US:
3 for LLW & 1-2 for HLW
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HLW
Weapons ProgramClive - UT

LLW
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Richland - WA
LLW

Commercial

Yucca Mountain - NV
HLW

Commercial
(not politically acceptable)

?

DOE controls ~15 small-scale disposal sites at national labs, 
conducting nuclear weapons research and production programs
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US Needs National Solution for
 LLW and HLW Disposal Problems

Recycling and Clearance

The solution…
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Handling Fusion Radioactive Materials
is Important to Future of Fusion Energy

• Background: Majority of earlier fusion power plants designed focused on disposal of
active materials in repositories, adopting fission radwaste management approach
preferred  in 1970’s.

• New Strategy: Develop new framework for fusion:
– Minimal radwaste should be disposed of in ground
– Promote:

• Recycling –  reuse within nuclear industry, if technically and economically feasible
• Clearance –  unconditional release to commercial market to fabricate as consumer products
                              (or dispose of in non-nuclear landfill).
                              Clearable materials are safe, containing < 1% of background radiation.

• Why?
– Limited capacity of existing low-level waste repositories
– Political difficulty of building new ones
– Tighter environmental controls
– Minimize radwaste burden for future generations.

• Applications: Any fusion concept (MFE & IFE); power plants and experimental devices.

• Impact: Promote fusion as nuclear source of energy with minimal environmental impact.
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Fusion Generates Large Amount of LLW
that would Fill Repositories Rapidly
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Radwaste Volume Comparison
(Actual volumes of components; not compacted, no replacements)
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What We Suggest

• Business as usual is not environmentally attractive option for fusion.
Something should be done.

• Fusion designs should adopt MRCB philosophy:

M – Minimize volume of active materials by clever designs

R  – Recycle, if economically and technologically feasible

C  – Clear slightly-irradiated materials
B  – Burn long-lived fusion byproducts, if any, in fusion devices*.

_____________________
*  L. El-Guebaly,  “Managing Fusion High Level Waste – a Strategy for Burning the Long-Lived Products in Fusion Devices,” 
                                 Fusion Engineering and Design, 81 (2006) 1321-1326. 
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Radwaste MinimizationRadwaste Minimization
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ARIES Project Committed to
Radwaste Minimization by Design

Tokamak waste volume
halved over 10 y study period

Stellarator waste volume
dropped by 3-fold

over 25 y study period
_____________________
* Actual volumes of components (not compacted, no replacements).
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Disposal,  Recycling,
and  Clearance

Disposal,  Recycling,
and  Clearance
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Disposal, Recycling, Clearance Approaches
Applied to Recent US Fusion Studies

(red indicates preference)

Components Recycle? Clear? Dispose of
 @ EOL?

MFE:
ARIES-CS@ all yes yes / no yes

 (as Class A & C LLW)

IFE:
ARIES-IFE Targets# no  yes / no yes
 (Heavy Ion Beam)   (for economic reasons)  (as Class A LLW)

Z-Pinch RTL* yes yes yes
 (carbon steel) (a must requirement)  (as Class A LLW)

______________________________
@ L. El-Guebaly et al., “Designing ARIES-CS Compact Radial Build and Nuclear System: Neutronics, Shielding, and Activation,” to be published in

Fusion Science and Technology.
# L. El-Guebaly, P. Wilson, D. Henderson, and A. Varuttamaseni, “Feasibility of Target Materials Recycling as Waste Management Alternative,”

Fusion Science & Technology, 46, No. 3, 506-518 (2004).
*   L. El-Guebaly, P. Wilson, and M. Sawan,  “Activation and Waste Stream Analysis for RTL of Z-Pinch Power Plant,” Fusion Science &

Technology 52, No. 3, 1027-1031 (2007).
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Economics Prevent Recycling of
ARIES-IFE-HIB Hohlraum Wall#

• Recycling of hohlraum walls doubles COE.
• Hohlraum walls represent < 1% of radwaste

stream.
• Once-through use generates Class A LLW.
• Target factory designers prefer dealing

with non-radioactive hohlraum wall
materials.

• Single fusion-specific repository (designed
for T-containing materials) is needed for such
fusion components and secondary waste.

One-Shot Use Recycling
Scenario Scenario

Cost per Target $ 0.4 $ 3.15
Incremental Change to COE ~ 10 mills/kWh  ~ 70 mills/kWh
Cost of Electricity (COE)  ~ 70 mills/kWh  ~ 130 mills/kWh

Hohlraum WallFoams
DT

Capsule
(5 mm OD)

HIB

ARIES-IFE Target

2 cm
Preferred Option

______________________________
# L. El-Guebaly, P. Wilson, D. Henderson, and A. Varuttamaseni, “Feasibility of Target Materials Recycling as Waste Management Alternative,”

Fusion Science & Technology, 46, No. 3, 506-518 (2004).
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Recycling is a “Must” Requirement for RTL of Z-Pinch to
Minimize Radwaste Stream and Enhance Economics*
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*   L. El-Guebaly, P. Wilson, and M. Sawan,  “Activation and Waste Stream Analysis for RTL of Z-Pinch Power Plant,”
      Fusion Science & Technology 52, No. 3, 1027-1031 (2007).
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ARIES Compact Stellarator
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ARIES-CS LLW Classification
for Geological Disposal

Class C Class A Could be
LLW LLW Cleared?

FW/Blkt/BW  √ no

Shield/Manifolds  √ no

Vacuum Vessel  √ no

Magnet:
Nb3Sn  √ no
Cu Stabilizer  √  √
JK2LB Steel*  √  √
Insulator   √  √

Cryostat  √  √

Bioshield  √  √

Least Hazardous
Type of Waste

______
* Preferred over Incoloy-908 for clearance considerations.

> 8 m below
ground surface
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Components
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Repository
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~ 8 m below
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≈
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70% of ARIES-CS Active Materials can be
Cleared in < 100 y after Decommissioning
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All ARIES-CS Components can Potentially be
Recycled in < 1 y Using Advanced RH Equipment
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• At early cooling periods (<10 y):
– Main contributor to dose of FS-based components is 54Mn from Fe
– Impurities have no contribution to recycling dose.

• Developing advanced recycling tools could relax stringent specifications imposed
on fusion material impurities.

• Development of more advanced tools is foreseen to support fission GNEP
initiative and MOX fuel reprocessing system.
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Recycling & Clearance Flow Diagram
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General Observations

• Fusion studies indicated recycling and clearance are technically feasible,
providing effective means to minimize radwaste volume.

• They should be pursued despite lack of details at present.

• Fusion recycling technology will benefit from fission developments and
accomplishments in 50 – 100 y.

• Fusion materials contains tritium that may introduce serious complications to
disposal and recycling

               ⇒ detritiation prior to recycling is necessary for fusion components.

• Several critical issues need further investigation for all three options:
– Disposal
– Recycling
– Clearance.
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Disposal Issues

• Large volume to be disposed of ( ≥ 8,000 m3 per 1 GWe plant, including bioshield)

• Immediate or deferred dismantling?

• High disposal cost (for preparation, packaging, transportation, licensing, and
disposal).

• Limited capacity of existing LLW repositories

• Need for fusion-specific repositories designed for T-containing materials

• Need for specific activity limits for fusion LLW issued by legal authorities

• Political difficulty of building new repositories

• Tighter environmental controls

• Radwaste burden for future generations.
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Recycling Issues
• Development of radiation-resistant RH equipment (≥ 10,000 Sv/h) for fusion use
• Large and low-cost interim storage facility with decay heat removal capacity#

• Dismantling and separation of various materials from complex components
• Energy demand for recycling process
• Cost of recycled materials
• Treatment and complex, remote re-fabrication of radioactive materials
• Radiochemical or isotopic separation processes for some materials, if needed
• Efficiency of detritiation system
• Management of secondary waste. Any materials for disposal?  Volume?

Radwaste level?
• Properties of recycled materials?  Any structural role?  Reuse as filler?
• Aspects of radioisotope and radiotoxicity buildup by subsequent reuse
• Recycling plant capacity and support ratio
• Acceptability of nuclear industry to recycled materials
• Recycling infrastructure.

___________
# e.g., heat pipes.
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Clearance Issues

______________________________
*  L. El-Guebaly, P. Wilson, and D. Paige,  “Evolution of Clearance Standards and Implications for Radwaste Management of Fusion Power Plants,”  
    Fusion Science & Technology,  49, 62-73 (2006).

• Discrepancies between US-NRC & IAEA clearance standards*

• Impact on CI prediction of missing radioisotopes
(such as 10Be, 26Al, 32Si, 91,92Nb, 98Tc, 113mCd, 121mSn, 150Eu, 157,158Tb,
     163,166mHo, 178nHf, 186m,187Re, 193Pt, 208,210m,212Bi, and 209Po).

• Need for official fusion-specific clearance limits
      issued by legal authorities

• Large and low-cost interim storage facility

• Clearance infrastructure

• Availability of clearance market (Europe is ahead of US in recycling/clearance.
Some experience already exists in several EU countries: Sweden, Germany, Spain, and
Belgium.  Currently, US industry does not support unconditional clearance claiming it
could erode public confidence in their products and damage their markets).
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US Industrial Experience Demonstrates Technical
and Economical Feasibility of Recycling

• INL and industrial firm recycled activated Pb bricks for nuclear industry.
Cost of Pb LLW disposal was ~$5/pound while cost of recycling was
~$4.3/pound including fabrication into brick shapes.

     Savings:
– Recycling versus disposal cost
– Disposal volume over entire lifecycle
– Not requiring purchase of new Pb bricks.

• INL and industrial company fabricated shielding casks out of recycled SS:
– Casks were designed, built, and tested for strength and impact
– Slag from melting tends to collect some radionuclides
– Composition adjustments after slag removal produced metal alloys with

properties very similar to those of fresh alloys
– Prototype casks functioned well and are still in use since 1996.

• In 1960s, ANL-West Hot Fuel Examination Facility developed tools to
handle fission fuel rods for Experimental Breeder Reactor (EBR-II).

 RH equipment operated well at 10,000 Sv/h.
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Recommendations

Regarding sizable amount of activated materials involved in fusion power plants,
Fusion designers should:

– Minimize radwaste volume by clever design
– Promote environmentally attractive scenarios such as recycling and clearance,

avoiding geological burial
– Investigate critical issues for all three options
– Address technical and economical aspects before selecting most suitable radwaste

management approach for any fusion component
– Continue developing low-activation materials. Stringent specifications on impurities

could be relaxed by developing advanced recycling tools.
Nuclear industry and regulatory organizations should:

– Continue developing advanced radiation-resistant remote handling equipment
capable of handling 10,000 Sv/h or more that can be adapted for fusion use

– Accept recycled materials from dismantled nuclear facilities
– Continue national and international efforts to convince industrial and environmental

groups that clearance can be conducted safely with no risk to public health
– Consider fusion-specific and advanced nuclear materials and issue official

guidelines for unconditional release of clearable materials.




