

Toward the Ultimate Goal of Radwaste-Free Fusion: Recycling and Clearance, Avoiding Geological Disposal

L. El-Guebaly

Fusion Technology Institute University of Wisconsin - Madison http://fti.neep.wisc.edu/UWNeutronicsCenterOfExcellence

> Seminar in Plasma Physics UW Department of Physics April 28, 2008

Background Info

Fusion fuel cycles:

- D-T fusion is easiest to achieve but produces large amount of energetic neutrons
- Neutrons activate materials surrounding plasma
- Proper choice of materials reduces radioactivity
- Researchers explored fuel cycles other than D-T to alleviate fusion radwaste problems.

FTI Developed and Actively Participated in 33 MFE & 24 IFE Studies during ~40 y

*in conjunction with other universities, national and international labs

*in conjunction with other universities, national and international labs

Over Past 20 y, Multi-Institutional ARIES Team Developed > 10 Advanced Designs

Fusion Demonstrates Adequate Performance in Several Safety and Environmental Areas

Environmental impact:

- **Minimal radioactive releases**[#] during normal and abnormal operations.
- Low activation materials with strict impurity control
 - \Rightarrow minimal long-term environmental impact
- Minimal low-level waste (LLW)
- No high-level waste (HLW)

Occupational and public safety:

- No evacuation plan following abnormal events (early dose at site boundary < 1 rem^{*}) to avoid disturbing public daily life.
- Low dose to workers and personnel during operation and maintenance activity (< 2.5 mrem/h).
- Public safety during normal operation (bio-dose << 2.5 mrem/h) and following credible accidents:
 - LOCA, LOFA, LOVA, and by-pass events.
 - External events (seismic, hurricanes, tornadoes, airplane crash, etc.).

No energy and pressurization threats to confinement barriers (VV and cryostat):

- Decay heat problem solved by design
- Chemical reaction avoided
- No combustible gas generated

- Chemical energy controlled by design
- Overpressure protection system
- Rapid, benign plasma shutdown.

^{* 1} rem (= 10 m Sv) accident dose stated in Fusion Safety Standards, DOE report, DOE-STD-6002-96 (1996).

[#] Such as T, volatile activated structure, corrosion products, and erosion dust. Or, from liquid and gas leaks.

Options for Radwaste Management

- Disposal in space
- Ice-sheet disposal
- Seabed disposal
- Transmutation of long-lived radionuclides (=> proliferation concerns)
- **Geological disposal** (preferred US option over past 50 y)
- Recycling / reprocessing (reuse within nuclear industry)
- Clearance (release to commercial market if materials are slightly radioactive)

NRC Classification of LLW and HLW

Fusion Generates Only LLW

All fusion materials are carefully chosen to minimize long-lived radioactive products (e.g., low-activation ferritic steel (FS), vanadium, and SiC structures)

Status of Geological Disposal

• Worldwide operational, <u>commercial</u> repositories:

	US	Europe	Japan	
LLW	3	6	1	
HLW				

- Currently, LLW represents ~ 90% of radwaste volume
- Largest US repository (Barnwell in SC) may limit LLW received in July 2008
- Several states tried to develop new disposal sites, but changed their mind because of strong opposition from public and environmentalists
- At present, many US utilities store LLW and HLW on site because of limited and/or expensive offsite disposal options
- As near-term solution, DOE opened its disposal facilities to commercial LLW

4-5 Large-Scale Repositories in US: 3 for LLW & 1-2 for HLW

US Needs National Solution for LLW and HLW Disposal Problems

Recycling and Clearance

The solution...

Handling Fusion Radioactive Materials is Important to Future of Fusion Energy

- **Background**: Majority of earlier <u>fusion power plants designed focused on disposal</u> of active materials in repositories, adopting fission radwaste management approach preferred in 1970's.
- **New Strategy**: Develop new framework for fusion:
 - Minimal radwaste should be disposed of in ground
 - Promote:
 - <u>Recycling</u> reuse within nuclear industry, if technically and economically feasible
 - <u>Clearance</u> unconditional release to commercial market to fabricate as consumer products (or dispose of in non-nuclear landfill). Clearable materials are <u>safe</u>, containing <u>< 1% of background radiation</u>.
- Why?
 - Limited capacity of existing low-level waste repositories
 - Political difficulty of building new ones
 - Tighter environmental controls
 - Minimize radwaste burden for future generations.
- Applications: Any fusion concept (MFE & IFE); power plants and experimental devices.
- **Impact**: Promote fusion as nuclear source of energy with minimal environmental impact.

Fusion Generates Large Amount of LLW that would Fill Repositories Rapidly

Radwaste Volume Comparison

(Actual volumes of components; not compacted, no replacements)

What We Suggest

- Business as usual is not environmentally attractive option for fusion. <u>Something should be done</u>.
- Fusion designs should adopt **MRCB** philosophy:
 - M Minimize volume of active materials by clever designs
 - \mathbf{R} <u>R</u>ecycle, if economically and technologically feasible
 - \mathbf{C} <u>C</u>lear slightly-irradiated materials
 - **B** <u>B</u>urn long-lived fusion byproducts, if any, in fusion devices^{*}.

^{*} L. El-Guebaly, "Managing Fusion High Level Waste – a Strategy for Burning the Long-Lived Products in Fusion Devices," *Fusion Engineering and Design*, **81** (2006) 1321-1326.

Radwaste Minimization

ARIES Project Committed to Radwaste Minimization by Design

^{*} Actual volumes of components (not compacted, no replacements).

Disposal, Recycling, and Clearance

Disposal, Recycling, Clearance Approaches Applied to Recent US Fusion Studies

(**red** indicates preference)

	Components	Recycle?	Clear?	Dispose of @ EOL?
MFE: ARIES-CS [@]	all	yes	yes / no	yes (as Class A & C LLW)
IFE: ARIES-IFE (Heavy Ion Beam)	Targets [#]	no (for economic reasons)	yes / no	yes (as Class A LLW)
Z-Pinch	RTL* (carbon steel)	yes (a <i>must</i> requirement)	yes	yes (as Class A LLW)

@ L. El-Guebaly et al., "Designing ARIES-CS Compact Radial Build and Nuclear System: Neutronics, Shielding, and Activation," to be published in Fusion Science and Technology.

L. El-Guebaly, P. Wilson, D. Henderson, and A. Varuttamaseni, "Feasibility of Target Materials Recycling as Waste Management Alternative," *Fusion Science & Technology*, 46, No. 3, 506-518 (2004).

* L. El-Guebaly, P. Wilson, and M. Sawan, "Activation and Waste Stream Analysis for RTL of Z-Pinch Power Plant," *Fusion Science & Technology* **52**, No. 3, 1027-1031 (2007).

Economics Prevent Recycling of ARIES-IFE-HIB Hohlraum Wall[#]

Cost per Target Incremental Change to COE Cost of Electricity (COE)	One-Shot Use Scenario \$ 0.4 ~ 10 mills/kWh ~ 70 mills/kWh	Recycling Scenario \$ 3.15 ~ 70 mills/kWh ~ 130 mills/kWh
 Recycling of hohlraum walls doubles Hohlraum walls represent < 1% of radistream. Once-through use generates Class A I. Target factory designers prefer deal with non-radioactive hohlraum wall materials. Single fusion-specific repository (designer fusion components and secondary was fusion components. 	COE. Iwaste LW. ing gned or such to	Option 2 cm HIB Foams Hohlraum Wall

[#] L. El-Guebaly, P. Wilson, D. Henderson, and A. Varuttamaseni, "Feasibility of Target Materials Recycling as Waste Management Alternative," *Fusion Science & Technology*, **46**, No. 3, 506-518 (2004).

Recycling is a "Must" Requirement for RTL of Z-Pinch to Minimize Radwaste Stream and Enhance Economics^{*}

ARIES Compact Stellarator

LiPb/He/FS System. 7.75 m Major Radius. 2.6 MW/m² Average NWL. 3 FPY Replaceable FW/Blanket/Div. 40 FPY Permanent Components. ~78 mills/kWh COE (\$2004).

ARIES-CS Cross Section @ $\varphi = 0$

ARIES-CS LLW Classification for Geological Disposal

70% of ARIES-CS Active Materials can be Cleared in < 100 y after Decommissioning

All ARIES-CS Components can Potentially be Recycled in < 1 y Using Advanced RH Equipment

- At early cooling periods (<10 y):
 - Main contributor to dose of FS-based components is ⁵⁴Mn from Fe
 Impurities have no contribution to recycling dose.
- Developing <u>advanced recycling tools could relax stringent specifications imposed</u> <u>on fusion material impurities.</u>
- Development of more advanced tools is foreseen to support fission GNEP initiative and MOX fuel reprocessing system.

Recycling & Clearance Flow Diagram

General Observations

- Fusion studies indicated recycling and clearance are technically feasible, providing <u>effective means to minimize radwaste volume</u>.
- They should be pursued despite lack of details at present.
- Fusion <u>recycling technology</u> will benefit from <u>fission</u> developments and accomplishments in 50 100 y.
- Fusion materials contains tritium that may introduce serious complications to disposal and recycling

 \Rightarrow detritiation prior to recycling is necessary for fusion components.

- Several **critical issues** need further investigation for all three options:
 - Disposal
 - Recycling
 - Clearance.

Disposal Issues

- Large volume to be disposed of ($\geq 8,000 \text{ m}^3 \text{ per 1 GW}_e$ plant, including bioshield)
- Immediate or deferred dismantling?
- High disposal cost (for preparation, packaging, transportation, licensing, and disposal).
- Limited capacity of existing LLW repositories
- Need for fusion-specific repositories designed for T-containing materials
- Need for specific activity limits for fusion LLW issued by legal authorities
- Political difficulty of building new repositories
- Tighter environmental controls
- Radwaste burden for future generations.

Recycling Issues

- Development of radiation-resistant RH equipment (\geq 10,000 Sv/h) for fusion use
- Large and low-cost interim storage facility with decay heat removal capacity[#]
- Dismantling and separation of various materials from complex components
- Energy demand for recycling process
- Cost of recycled materials
- Treatment and complex, remote re-fabrication of radioactive materials
- Radiochemical or isotopic separation processes for some materials, if needed
- Efficiency of detritiation system
- Management of secondary waste. Any materials for disposal? Volume? Radwaste level?
- Properties of recycled materials? Any structural role? Reuse as filler?
- Aspects of radioisotope and radiotoxicity buildup by subsequent reuse
- Recycling plant capacity and support ratio
- Acceptability of nuclear industry to recycled materials
- Recycling infrastructure.

[#] e.g., heat pipes.

Clearance Issues

- Discrepancies between US-NRC & IAEA clearance standards*
- Impact on CI prediction of missing radioisotopes (such as ¹⁰Be, ²⁶Al, ³²Si, ^{91,92}Nb, ⁹⁸Tc, ^{113m}Cd, ^{121m}Sn, ¹⁵⁰Eu, ^{157,158}Tb, ^{163,166m}Ho, ¹⁷⁸ⁿHf, ^{186m,187}Re, ¹⁹³Pt, ^{208,210m,212}Bi, and ²⁰⁹Po).
- Need for official fusion-specific clearance limits issued by legal authorities
- Large and low-cost interim storage facility
- Clearance infrastructure

• Availability of clearance market (Europe is ahead of US in recycling/clearance. Some experience already exists in several EU countries: Sweden, Germany, Spain, and Belgium. Currently, US industry does not support unconditional clearance claiming it could erode public confidence in their products and damage their markets).

^{*} L. El-Guebaly, P. Wilson, and D. Paige, "Evolution of Clearance Standards and Implications for Radwaste Management of Fusion Power Plants," *Fusion Science & Technology*, **49**, 62-73 (2006).

US Industrial Experience Demonstrates Technical and Economical Feasibility of Recycling

- INL and industrial firm recycled activated Pb bricks for nuclear industry. <u>Cost</u> of Pb LLW disposal was ~\$5/pound while cost of recycling was ~\$4.3/pound including fabrication into brick shapes. Savings:
 - Recycling versus disposal cost
 - Disposal volume over entire lifecycle
 - Not requiring purchase of new Pb bricks.
- INL and industrial company fabricated shielding casks out of recycled SS:
 - Casks were designed, built, and tested for strength and impact
 - <u>Slag</u> from melting tends to collect some radionuclides
 - Composition adjustments after slag removal produced metal alloys with properties very similar to those of fresh alloys
 - Prototype casks functioned well and are still in use since 1996.
- In 1960s, ANL-West Hot Fuel Examination Facility developed tools to handle fission fuel rods for Experimental Breeder Reactor (EBR-II).
 RH equipment operated well at 10,000 Sv/h.

Recommendations

Regarding sizable amount of activated materials involved in fusion power plants,

Fusion designers should:

- Minimize radwaste volume by clever design
- Promote environmentally attractive scenarios such as recycling and clearance, avoiding geological burial
- Investigate critical issues for all three options
- Address technical and economical aspects before selecting most suitable radwaste management approach for any fusion component
- Continue developing low-activation materials. Stringent specifications on impurities could be relaxed by developing advanced recycling tools.

Nuclear industry and regulatory organizations should:

- Continue developing advanced radiation-resistant remote handling equipment capable of handling 10,000 Sv/h or more that can be adapted for fusion use
- Accept recycled materials from dismantled nuclear facilities
- Continue national and international efforts to convince industrial and environmental groups that clearance can be conducted safely with no risk to public health
- Consider <u>fusion-specific</u> and advanced nuclear materials and <u>issue official</u> guidelines for unconditional release of clearable materials.