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Objectives
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e Address key nuclear and activation issues for latest SiC-based ARIES
des gn (ARIES-AT):
Breeding capability of blanket
— Lifetime of structural components
— Activation and decay heat levels
— Waste disposal rating (WDR)

» Assessimpact of nuclear and activation parameters on design choices:

Parameters | ssues

TBR Breeder type
Blanket thickness
Li enrichment

Radiation damage Service lifetime
Radial build

WDR Service lifetime

e Shielding capability of SIC:
— Limitations
— Optimal shield design



Key Design Parametersfor ARIES-AT
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Fusion power 1737 MW
FW location at midplane— OB, IB 6.05 , 3.55 m
at top/bottom - OB , 1B ~45 , 355 m
[': Peak OB, IB 6 ,4 MW/
Average OB |, IB 52, 2.8 MW/m?
FW poloidal length' — OB , IB ~55, 45 m
SiC burnup limit” 3%
FS dpa limit 200 dpa
Machine lifetime 40 FPY

" Between X points
* Impact of 3% burnup on SiC properties needs to be assessed by R& D program



Computational Tools: Codes and Data Library
Used in Analysis
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3-D transport code: MCNP — version 4.A

— Continuous energy
— Pointwise Xn data

Discrete ordinate transport code: DANTSY S

— 1-D and 2-D geometry
— 175 neutron and 42 gamma group structure
— P5-Sg approximation

Activation code: ALARA” (developed recently @ UW)

— 175 neutron and 42 gamma group structure
— Pulsed activation capability

Most recent FENDL-2 Xn datalibrary

" Analytic and Laplacian Adaptive Radioactivity Analysis



Blanket Neutronics
ALY sy

e Key blanket features:

— Self-cooled FW/blanket

— 1B and OB blankets only (no blanket behind divertor):
— 30 cm thick IB FW/blanket
— 65 cm thick OB FW/blanket

— 90% enriched breeder

— 6 cmthick W vertical stabilizing shell

— CD Penetrations and assembly gaps

e Three candidate breeders (compatible with SiC):
- Li17Pb83 - Li25Sn75 - F4LizBe#
TBR 1.1 0.9 0.85
— LiPbispreferred breeder
Li,sSn;s and F4Li,Be will not meet breeding requirement

e 3-D nuclear parameters for SIC/LiPb design:

Overal TBR 1.1
Overal Mn 1.1
SiIC Burnup rate 1% per FPY
FW EOL Fluence 18 MWy/m?
FW Lifetime 3 FPY

o Comments:

— SIC content in FW has significant impact on breeding level

— Thicker blanket increases breeding slighltly (~3%)

— Blanket will not breed with lower enrichment (< 90%) unless Al or
Cu shell replaces W shell

* natural Li
" arequirement



Peak Radiation Damage to SIC FW
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Inboard Outboard
He appm/FPY 4,800 5,300
H appm/FPY 1,900 2,100
dpa/FPY 60 70
Nuclear Heating (W/cm®) 25 30

(n,He) and (n,H) high energy reactions (E, > 3 MeV) transmute Si and
Cinto Al, Mg, Li, and Be

He production in SIC is excessive (8-10 times that of FS). Impact of

He and other transmutations on SiC properties needs to be assessed

Burnup rate calculations:
— Each (n,He) or (n,H) reaction with either Si or C atom

burns a SIC molecule

Results: 1% SiC burnup rate per FPY @ 6 MW/m?:
— S burnsfaster than C (0.7% S and 0.3% C)
— Morefree C atomsthan free S atomsin SIC/SiC composites

Impact on SiC properties!?



Blanket Segmentation
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e Burnup rate drops fast within blanket

e To reduce radwaste stream and replacement cost, segment OB blanket into:
— 30 cm thick replaceable FW/Blanket-I
— 35 cm thick permanent Blanket-11”

e Based on 3% burnup limit and peak OB T of 6 M\W/m?, components

lifetimes are:
OB FW/B-I 3 FPY
OB B-I| 40 FPY
HT shield 40 FPY

e |IB blanket will be replaced with OB blanket on same time basis to enhance
availability

" Boundary between replaceable and permanent blankets will be confirmed by 3-D



SiC Shielding Capability
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e From the shielding viewpoint, metals are superior to SIC

» Shield made entirely out of SIC/SIC composites (400 $/kg) is extremely
expensive

» Shield contains 15-20% of nuclear heating that must be recovered at high
temperature (HT) to improve power balance. This means SIC structure
should be used in shield

* Recommendations:

— Dividethe shield into HT and LT components (the latter could
contain few % of heating)

— Limit use of SIC structure to HT components

— Use stedl filler with SIC structure for better shielding

— Employ more efficient, expensive WC and/or B,C filler for 1B
shield /V.V. to reduce machine size (monitor decay heat of WC
components)

— Usewater to cool LT shield and V.V. to improve shielding
performance

— Optimize composition of shield and V.V .; trade filler for water

— Size blanket to protect shield for plant life to reduce radwaste
stream

 If implemented correctly, design will have attractive features:
— Compact machine
— Competitive cost
— Low radwaste volume/mass
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Inboard Radial Build
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Outboard Radial Build
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Activation Issues
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SiC has attractive safety features

Activation results reported here are for:
— OB side only, as defined by OB radial build.
(IB side exhibits similar behavior at reduced level)
— SIC and FSwith impurities
— 100% dense compacted waste (coolants and void excluded)

Results include:
— Activity and decay heat as function of time after shutdown
— Fetter'sand NRC (10CFR61) waste disposal ratings @ EOL of
individual components

Clearance and LOCA/LOFA results are not available yet. Analyses are
underway



Impurity Levels Considered in SIC-Based
ARIES Designs
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Table 1: SUPERSiC® Silicon—Carbide Impurity Levels’

Concentration

Element (ppm)
Na* 0.050
K 0.180
Sc 0.013
Ti* BDL*
Cr* 0.017
Fe* 0.440
Co* 0.013
Ni* 0.074
Cu* 0.048
Zn* 0.043
Ga¥* < 0.005
As* 0.003
Se < 0.001
Br <0.001
Rb 0.001
Sr 0.012
Zr* 0.236
Mo* 0.041
Ag* 0.002
Aluminum#* ND*
Boron* ND*

Concentration

Element (ppm)
Cd* 0.004
In < 0.001
Sn* < 0.076
Sb < 0.001
Cs < 0.001
Ba 0.047
La 0.018
Eu < 0.001
Tb < 0.001
Yb < 0.001
Hf < 0.001
Ta < 0.001
Wk 0.032
Ir < 0.001
Pt* 0.542
~Au* 0.000
Hg < 0.001
Th < 0.001
U 0.001
Phosphorus* ND*

FData was obtained using neutron activation analysis INAA) by AT& T Analytical Services,

Allentown, PA 18103

* 1993 measurements, all others are 1992 measurements.

# BDL: Below Detection Limit; ND: Not Detected Using NAA

S. Sharafa:, IPFR / UCLA, ARIES Study: Materials; Sept. 1993

%)




Activity
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e FW contains higher activity than B-1 and B-11
e SiC activity decays rapidly shortly after shutdown

e Highly irradiated SIC FW generates |lower intermediate activity (1d-5y)
than well protected FS shield



Decay Heat
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e Unlike metals, SIC decay heat drops fast after one minute, meaning slight
increase in SIC temperature during LOCA/LOFA events

e Inblanket, LiPb breeder may contain higher decay heat than SiC structure
= LOFA could be more critical than LOCA



Dominant Radionuclides
@ Various Times After Shutdown

(in descending order)

Activity:

SIC FW
Shutdown A|28:29:30
t<1d Na** g%t
1d<t> 1w Naz"’,T,P32
Iw<t>1ly T
1y < t> 10y T,C*
>10y c* Be®
Decay Heat:

SIC FW
Shutdown A|2829:30
t<1d Na** g%t
ld<t>1w  Na** st p*

HT Shield

FeSS W185,187
M n56,Cr51,R8186
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Class C Waste Disposal Rating

"‘ V4 University of

Wisconsin

Fetter's NRC

WDR WDR

FW/Blanket-I 0.1 0.02
(AIZ®Y (C*

Blanket-I| 0.002 0.05
(A|26) (C14)

HT Shield 0.17 0.1

(Nb94,TC99,H0166m) (Nb94,Ni63’59)

V.V. 0.05 0.03
(N b94, H 0166m) (N b94)
M agnet 0.01 0.004
( A 9108m’ N b94) (N b94)

e WDR < 1 means component qualifies as Class C low level waste
e Al?*®isdominant nuclide for Fetter's WDR of SiC components:
Si?®(n,np) Al (n,2n) AI*®
e C"isdominant nuclide for NRC WDR of SiC components:
C2(n,y) C® (n, v) CH
Highly irradiated SiC blanket qualifies easily as
Class C LLW after 3 FPY

For SIC, radiation damage limit is more restrictive life
limiting factor than waste disposal limit

Impact of brazing materials on SIC WDR will be assessed

" Dominant radionuclides in descending order



Conclusions
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e SIC blanket with LiPb breeder provides adequate breeding
(TBR=1.1). Other LixsSn;s and F4Li,Be breederswill not meet
breeding requirement unless Be isincorporated in blanket

e 3% burnup limit resultsin EOL fluence of 18 M\Wy/m? and service
lifetime of 3 FPY for SiC components opertating at 6 MW/m?

e Activation analysis performed so far identified no safety concernsfor
SiC components:
— Unlike metals, SIC activity and decay heat drop rapidly by
3 orders of magnitude in one day, meaning slight increase
in SIC temperature during LOCA/LOFA events
— SIC radwaste qualifies easily as Class C LLW, meaning

simplified waste management





