Nuclear and Activation Issues for SiC/SiC Composites

Laila El-Guebaly Fusion Technology Institute University of Wisconsin - Madison

With inputs from:

D. Henderson, A. Abdou, P. Wilson, I. Sviatoslavsky, E. Mogahed (UW), R. Raffray (UCSD), S. Malang (FZK), M. Billone (ANL), D. Petti (INEEL)

Web address: http://fti.neep.wisc.edu/FTI/POSTERS/lae_ornl.pdf

International Town Meeting on SiC/SiC Design and Material Issues for Fusion Systems January 18-19, 2000 ORNL Oak Ridge, TN - USA

Objectives

- Address key nuclear and activation issues for latest SiC-based ARIES design (ARIES-AT):
 - Breeding capability of blanket
 - Lifetime of structural components
 - Activation and decay heat levels
 - Waste disposal rating (WDR)
- Assess impact of nuclear and activation parameters on design choices:

Parameters TBR	Issues Breeder type Blanket thickness Li enrichment
Radiation damage	Service lifetime Radial build
WDR	Service lifetime

- Shielding capability of SiC:
 - Limitations
 - Optimal shield design

Key Design Parameters for ARIES-AT			
	University of Wisconsin		
Fusion power	1737 MW		
FW location at midplane – OB, IB at top/bottom – OB, IB	6.05 , 3.55 m ~4.5 , 3.55 m		
Γ : Peak OB , IB Average OB , IB	6 , 4 MW/m ² 5.2 , 2.8 MW/m ²		
FW poloidal length [*] – OB, IB	~5.5 , 4.5 m		
SiC burnup limit [#]	3%		
FS dpa limit	200 dpa		
Machine lifetime	40 FPY		

^{*} Between X points * Impact of 3% burnup on SiC properties needs to be assessed by R&D program

Computational Tools: Codes and Data Library Used in Analysis

- 3-D transport code: MCNP version 4.A
 - Continuous energy
 - Pointwise Xn data

• Discrete ordinate transport code: DANTSYS

- 1-D and 2-D geometry
- 175 neutron and 42 gamma group structure
- P₃-S₈ approximation
- Activation code: ALARA^{*} (developed recently @ UW)
 - 175 neutron and 42 gamma group structure
 - Pulsed activation capability

• Most recent FENDL-2 Xn data library

^{*} Analytic and Laplacian Adaptive Radioactivity Analysis

Blanket Neutronics

University of Wisconsin

• Key blanket features:

- Self-cooled FW/blanket
- IB and OB blankets only (no blanket behind divertor):
 - 30 cm thick IB FW/blanket
 - 65 cm thick OB FW/blanket
- 90% enriched breeder
- 6 cm thick W vertical stabilizing shell
- CD Penetrations and assembly gaps
- Three candidate breeders (compatible with SiC):

	- Li ₁₇ Pb ₈₃	- Li ₂₅ Sn ₇₅	- F ₄ Li ₂ Be [#]
TBR	1.1	0.9	0.85
\Rightarrow	LiPb is preferr	red breeder	

 $Li_{25}Sn_{75}$ and F_4Li_2Be will not meet breeding requirement

• 3-D nuclear parameters for SiC/LiPb design:

Overall TBR	1.1^{*}
Overall <mark>Mn</mark>	1.1
SiC Burnup rate	1% per FPY
FW EOL Fluence	18 MWy/m^2
FW Lifetime	3 FPY

• Comments:

- SiC content in FW has significant impact on breeding level
- Thicker blanket increases breeding slightly (~3%)
- Blanket will not breed with lower enrichment (< 90%) unless Al or Cu shell replaces W shell

[#] natural Li

a requirement

Peak Radiation Damage to SiC FW			
		University of Wisconsin	
	<u>Inboard</u>	Outboard	
He appm/FPY	4,800	5,300	
H appm/FPY	1,900	2,100	
dpa/FPY	60	70	
Nuclear Heating (W/cm ³)	25	30	

- (n,He) and (n,H) high energy reactions (E_n > 3 MeV) transmute Si and C into Al, Mg, Li, and Be
- He production in SiC is excessive (8-10 times that of FS). Impact of He and other transmutations on SiC properties needs to be assessed
- Burnup rate calculations:
 - Each (n,He) or (n,H) reaction with either Si or C atom burns a SiC molecule
- Results: 1% SiC burnup rate per FPY @ 6 MW/m²:
 - Si burns faster than C (0.7% Si and 0.3% C)
 - ⇒ More free C atoms than free Si atoms in SiC/SiC composites Impact on SiC properties !?

- Burnup rate drops fast within blanket
- To reduce radwaste stream and replacement cost, segment OB blanket into:
 - 30 cm thick replaceable FW/Blanket-I
 - 35 cm thick permanent Blanket-II^{*}
- Based on 3% burnup limit and peak OB Γ of 6 MW/m², components' lifetimes are:

OB FW/B-I	3	FPY
OB B-II	40	FPY
HT shield	40	FPY

• IB blanket will be replaced with OB blanket on same time basis to enhance availability

^{*} Boundary between replaceable and permanent blankets will be confirmed by 3-D

SiC Shielding Capability

University of Wisconsin

From the shielding viewpoint, metals are superior to SiC

- Shield made entirely out of SiC/SiC composites (400 \$/kg) is extremely expensive
- Shield contains 15-20% of nuclear heating that must be recovered at high temperature (HT) to improve power balance. This means SiC structure should be used in shield
- Recommendations:

•

- Divide the shield into HT and LT components (the latter could contain few % of heating)
- Limit use of SiC structure to HT components
- Use steel filler with SiC structure for better shielding
- Employ more efficient, expensive WC and/or B₄C filler for IB shield /V.V. to reduce machine size (monitor decay heat of WC components)
- Use water to cool LT shield and V.V. to improve shielding performance
- Optimize composition of shield and V.V.; trade filler for water
- Size blanket to protect shield for plant life to reduce radwaste stream
- If implemented correctly, design will have attractive features:
 - Compact machine
 - Competitive cost
 - Low radwaste volume/mass

Inboard Radial Build

<u>Component</u>	Composition [#]	Lifetime (FPY)
FW (1.9 cm)	51% SiC, 49% LiPb	3
Blanket (28.1 cm)	12% SiC, 88% LiPb	3
HT Shield	15% SiC, 10% LiPb, 75% B-FS	40
LT Shield	15% FS , $10%$ H ₂ O , $75%$ WC	40
Vacuum Vessel	35% FS, 65% H ₂ O	40
HT Magnet	87% SS, 10% LN, 2.5% Y ₁ Ba ₂ Cu ₃ O ₅ , 0.5% Ag	g 40

• V.V. and TF magnet radiation limits are all met^{*} for peak $\Gamma = 4 \text{ MW/m}^2$ (1 He appm at V.V and 10^{19} n/cm^2 at magnet @ EOL)

[#] SiC and WC are 95% dense

^{*} Safety factor of 3 considered in all shielding calculations

Outboard Radial Build

• V.V. and TF magnet radiation limits are all met^{*} for peak $\Gamma = 6 \text{ MW/m}^2$ (1 He appm at V.V and 10^{19} n/cm^2 at magnet @ EOL)

[#] SiC and WC are 95% dense

^{*} Safety factor of 3 considered in all shielding calculations

Activation Issues

• SiC has attractive safety features

• Activation results reported here are for:

- OB side only, as defined by OB radial build.
 (IB side exhibits similar behavior at reduced level)
- SiC and FS with impurities
- 100% dense compacted waste (coolants and void excluded)

• Results include:

- Activity and decay heat as function of time after shutdown
- Fetter's and NRC (10CFR61) waste disposal ratings @ EOL of individual components

• Clearance and LOCA/LOFA results are not available yet. Analyses are underway

Impurity Levels Considered in SiC-Based **ARIES** Designs

Element	Concentration (ppm)		Element	Concentration (ppm)
Na*	0.050		Cd*	0.004
К	0.180		In	< 0.001
Sc	0.013	1	Sn*	< 0.076
Ti*	BDL [#]		Sb	< 0.001
Cr*	0.017		Cs	< 0.001
Fe*	0.440		Ba	0.047
Co*	0.013		La	0.018
Ni*	0.074		Eu	< 0.001
Cu*	0.048		Tb	< 0.001
Zn*	0.043		Yb	< 0.001
Ga*	< 0.005		Hf	< 0.001
As*	0.003		Та	< 0.001
Se	< 0.001		W*	0.032
Br	<0.001		lr	< 0.001
Rb	0.001		Pt*	0.542
Sr	0.012	1	Au*	0.000
Zr*	0.236		Hg	< 0.001
Mo*	0.041	1	Th	< 0.001
Ag*	0.002		U	0.001
Aluminum*	ND [#]	1	Phosphorus*	ND [#]
Boron*	ND#	1	· · · · · · · · · · · · · · · · · · ·	

Table 1: SUPERSIC[®] Silicon–Carbide Impurity Levels[†]

[†]Data was obtained using neutron activation analysis (NAA) by AT&T Analytical Services,

Allentown, PA 18103 * 1993 measurements, all others are 1992 measurements.

[#] BDL: Below Detection Limit; ND: Not Detected Using NAA

Activity

- FW contains higher activity than B-I and B-II
- SiC activity decays rapidly shortly after shutdown
- Highly irradiated SiC FW generates lower intermediate activity (1d-5y) than well protected FS shield

- Unlike metals, SiC decay heat drops fast after one minute, meaning slight increase in SiC temperature during LOCA/LOFA events
- In blanket, LiPb breeder may contain higher decay heat than SiC structure
 ⇒ LOFA could be more critical than LOCA

Dominant Radionuclides @ Various Times After Shutdown

(in descending order)

Activity:	SiC FW	HT Shield	Magnet
Shutdown	Al ^{28,29,30}	Fe ⁵⁵ ,W ^{185,187} , Mn ⁵⁶ ,Cr ⁵¹ ,Re ¹⁸⁶	$Ag^{110},Mn^{56},$ Ag^{108},Fe^{55}
t < 1 d	Na ²⁴ ,Si ³¹	Fe ⁵⁵ ,W ^{185,187} , Mn ⁵⁶ ,Cr ⁵¹ ,Re ¹⁸⁶	Mn ⁵⁵ ,Fe ⁵⁵ ,Co ⁵⁸ , Ag ¹¹⁰ ,Cr ⁵¹
1d < t > 1w	Na ²⁴ ,T,P ³²	Fe ⁵⁵ ,W ¹⁸⁵ ,Cr ⁵¹ , Fe ⁵⁹ ,Mn ⁵⁴ ,Re ¹⁸⁶	Fe ⁵⁵ ,Co ⁵⁸ , Ag ¹¹⁰ ,Cr ⁵¹ ,Mn ⁵⁴
1w < t > 1y	Т	Fe ⁵⁵ ,W ¹⁸⁵ ,Mn ⁵⁴	Fe ⁵⁵ ,Co ⁵⁸ ,Ag ^{110m} , Mn ⁵⁴
1y < t > 10y	T,C ¹⁴	Fe ⁵⁵ ,T,Co ⁶⁰	Fe ⁵⁵ ,Ni ⁶³ ,Co ⁶⁰
> 10 y	C ¹⁴ ,Be ¹⁰	Ni ⁶³ ,T,Mo ⁹³ , Nb ^{93m} ,Ni ⁵⁹	Ni ⁶³ ,Ag ^{108m} ,Ni ⁵⁹ , C ¹⁴ ,Mo ⁹³ ,Nb ^{93m}
Decay Heat	<u>t:</u> SiC FW	HT Shield	Magnet
Shutdown	Al ^{28,29,30}	Mn ⁵⁶ ,W ^{187,185}	Ag ¹¹⁰ ,Mn ⁵⁶
t < 1 d	Na ²⁴ ,Si ³¹	Mn ⁵⁶ ,W ^{187,185}	Mn ⁵⁵ ,Ag ¹¹⁰ ,Co ⁵⁸
1d < t > 1w	Na ²⁴ ,Si ³¹ ,P ³²	W ¹⁸⁵ ,Fe ⁵⁹ , Mn ⁵⁴	$Ag^{110m}, Co^{58}, Mn^{54}$

Class C Waste Disposal Rating				
		University of Wisconsin		
	Fetter's	NRC		
	WDR	WDR		
FW/Blanket-I	0.1	0.02		
	$(Al^{26})^*$	(C^{14})		
Blanket-II	0.002	0.05		
	(Al^{26})	(C^{14})		
HT Shield	0.17	0.1		
	(Nb ⁹⁴ ,Tc ⁹⁹ ,Ho ^{166m})	(Nb ⁹⁴ ,Ni ^{63,59})		
V.V.	0.05	0.03		
	(Nb ⁹⁴ ,Ho ^{166m})	(Nb ⁹⁴)		
Magnet	0.01	0.004		
C	(Ag^{108m}, Nb^{94})	(Nb ⁹⁴)		

- WDR < 1 means component qualifies as Class C low level waste
- Al²⁶ is dominant nuclide for Fetter's WDR of SiC components: Si²⁸ (n, np) Al²⁷ (n, 2n) Al²⁶
- C^{14} is dominant nuclide for NRC WDR of SiC components:
 - $C^{12}\,(\, \underline{n}\,, \gamma\,) \ C^{13}\,\,(n, \gamma\,) \ C^{14}$

Highly irradiated SiC blanket qualifies easily as Class C LLW after 3 FPY

For SiC, radiation damage limit is more restrictive life limiting factor than waste disposal limit

Impact of brazing materials on SiC WDR will be assessed

^{*} Dominant radionuclides in descending order

Conclusions

 SiC blanket with LiPb breeder provides adequate breeding (TBR=1.1). Other Li₂₅Sn₇₅ and F₄Li₂Be breeders will not meet breeding requirement unless Be is incorporated in blanket

 3% burnup limit results in EOL fluence of 18 MWy/m² and service lifetime of 3 FPY for SiC components opertating at 6 MW/m²

- Activation analysis performed so far identified no safety concerns for SiC components:
 - Unlike metals, SiC activity and decay heat drop rapidly by
 3 orders of magnitude in one day, meaning slight increase
 in SiC temperature during LOCA/LOFA events
 - SiC radwaste qualifies easily as Class C LLW, meaning simplified waste management