Nuclear Issues and Analysis for ARIES Spherical and Advanced Tokamaks

Laila El-Guebaly and the ARIES team Fusion Technology Institute University of Wisconsin - Madison

http://fti.neep.wisc.edu/FTI/uwfdm.html

Peak F	Peak Radiation Damage to FW per Unit Wall Loading				
				University of Wisconsin	
	ARIES-ST		ARIES-AT		
	<u>1-D</u>	<u>3-D</u>	<u>1-D</u>	<u>3-D</u>	
<u>Inboard:</u> dpa/FPY	25	13	28	15	
He appm/FPY	210	120	1730	1200	
H appm/FPY	830	510	1220	480	
Nuclear Heating (W/cm ³)	16	7	12	6	
Outboard: dpa/FPY	15	11	18	11	
\Rightarrow FW/B EOL Flu	uence	18			
(MWy/r	n^2)				
He appm/FPY	170	110	1410	870	
H appm/FPY	660	470	990	350	
\Rightarrow FW/B EOL Flu (MWy)	uence $/m^2$)			18.5	
Nuclear Heating (W/cm^3)	10	6	9	5	

- 1-D model overestimates FW damage and underestimates damage to back components
- 3-D results should be used to re-normalize 1-D n source for individual components

Differences Bet	ween 3-D and 1	-D Analyses
		University of Wisconsin
	<u>3-D</u>	<u>1-D</u>
Model	actual	toroidal cylindrical
Angular distribution of incident 14 MeV n's on FW	mostly perpendicular ⇒ lower front damage higher back damage	perpendicular and tangential components
Plasma shape	actual	cylindrical
n source distribution	actual	uniform, shifted outward
Reflection from i/b, o/b, div.	actual	no div. effect
Vertical variation of n wall loading	non-uniform → less reflection from parts off midplane	uniform \Rightarrow more reflection
Cross section data	pointwise	multi-group

Subsystem Requirements for Inboard Shield of ARIES-ST

• Design requirements:

Shield Size

- Protect CP against radiation for > 3 FPY (Cu embrittlement, resistivity change, activation, coolant radiolysis)
- Enhance outboard breeding
- Reduce heat load and thermal stress to CP

• Safety requirements:

- Compatible with CP and blanket

• Economic requirements:

- Prolong CP lifetime (replacement cost, availability, radwaste stream)
- Maximize Mn (\Rightarrow recover i/b heating)
- Reduce Joule losses (\Rightarrow minimize shield size)

Unshielded CP does not offer attractive design

Inboard shield competes with CP for valuable space

Contradicting requirements mean inboard shield design is a compromise between several constraints

Shielding parameters should be chosen to optimize overall design, not only to minimize Joule losses in CP

20 cm Thick He-Cooled Inboard Shield is Optimal for ARIES-ST

University of Wisconsin

- Inboard power losses (and thus COE) minimize near 20 cm thick shield
- Net i/b power losses (in MW_{th})=

 $P / + NH_{CP} + PP / - [(SH + NH)_{FW/shld} + 0.9 PP]$

where P is CP Joule losses,

- is thermal conversion efficiency,
- SH is Surface Heating,
- NH is Nuclear Heating,
- PP is He Pumping Power (90% of PP is recovered as thermal heat)

• Designs with i/b shields thinner than 20 cm will have higher COE, lower breeding, higher CP damage, shorter CP lifetime, higher Cu radwaste stream, and higher CP decay heat

		University of Wisconsin
	ARIES-ST	ARIES-A
Fusion Power (MW)	3000	2200
Net Electric Power (MW _e)	1000	1000
Aspect ratio	1.6	4
Elongation	3.4	1.9
Major radius (m)	3.2	4.8
Minor radius (m)	2	1.2
Neutron wall loading (MW/ Peak outboard Peak inboard	(m ²) 6.4 3.7	6.6 5.1
Structural material	FS	SiC/SiC
Radiation damage limit	200 dpa	3% burnur
Plant lifetime (FPY)	40	40

- $Li_{25}Sn_{75}$ and F_4Li_2Be have lower breeding potential than $Li_{17}Pb_{83}$
- Other enrichments yield lower TBR
- Structure, penetrations, and geometry degrade overall TBR to 1.1 or less

Shielding Requirements

Conclusions

- Nuclear issues that raised most concern are protection of center post and breeding potential of candidate breeders
- Unshielded CP does not offer an attractive design
- LiPb blanket provides adequate breeding with 5% excess breeding capability
- LiSn and FLiBe will not meet breeding requirements unless Be is used in blanket
- Key neutronics results:

Overall TBR Overall M_n PFC and CP lifetimes Shield and magnet lifetimes FW/B EOL Fluence 1.1 1.1 3 FPY 40 FPY 18 MWy/m²

- Good agreement obtained between 1-D and 3-D analyses for global values: overall TBR and M_n
- 1-D analysis overestimates local radiation damage to PFCs and underestimates damage at back of blanket/shield