
Goals, Challenges, and Successes
of Managing

Fusion Active Materials

 L. El-Guebaly1,
V. Massaut2, K. Tobita3, L. Cadwallader4

1University of Wisconsin-Madison, Madison, WI, U.S.A.
2SCKCEN, Belgian Nuclear Research Center, Belgium

3Japan Atomic Energy Agency, Ibaraki, Japan
4Idaho National Laboratory, Idaho Falls, ID, U.S.A.

8th International Symposium on Fusion Nuclear Technology
ISFNT-8

October 1-5,  2007
Heidelberg, Germany



2

Handling Fusion Radioactive Materials
is Important to Future of Fusion Energy

• Background: Majority of earlier fusion power plants designed focused on disposal of
active materials in repositories, adopting fission waste management approach preferred
in 1970’s.

• New Strategy: Develop new framework for fusion:
– Minimal radwaste should be disposed of in ground
– Promote:

• Recycling –  reuse within nuclear industry, if technically and economically feasible
• Clearance –  unconditional release to commercial market to fabricate as consumer products
                             or dispose of in non-nuclear lanfill.

• Why?
– Limited capacity of existing low-level waste repositories
– Political difficulty of building new repositories
– Tighter environmental controls
– Minimize radwaste burden for future generations.

• Applications: Any fusion concept (MFE & IFE); power plants and experimental devices.

• Impact: Promote fusion as nuclear source of energy with minimal environmental impact.
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Geological Disposal

• Majority of fusion power plants will generate only low-level waste (LLW) that
requires near-surface, shallow-land burial if all fusion materials are carefully chosen
to minimize long-lived radioactive products.

• In specific cases, even though reprocessing seemed technically feasible, disposal
scheme emerged as preferred option for economic reasons.

• In all countries, LLW represents about 90% of all fission radwaste volume.

• Few countries are likely to have deep-mined geological repository. HLW Hanford
facility has been in operation in US since 1960. In 1990s, only one such repository
was granted license: U.S. Waste Isolation Pilot Plant (WIPP).

• No HLW facility in Europe or Japan.
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Ten LLW Repositories in US, EU, J

• US:
– Barnwell repository* in South Carolina – Class A, B, C LLW
– Richland repository in Washington – Class C LLW
– Clive repository in Utah – Class A LLW
– Many nuclear facilities are currently storing their LLW (and HLW) onsite

because of limited and expensive offsite disposal options.

• Europe:
– LILW repository in France (CSA), Spain (El Cabril), Sweden (SFR), United

Kingdom (Drigg), and Finland (at each nuclear power plant site)
– VLLW repository in France.

• Japan:
– One repository in Rokkasho for LLW(II).

_____________________
* Barnwell facility may limit in 2008 amount of LLW that they currently accept. 
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Fusion Generates Large Amount of LLW
that would Fill Repositories Rapidly
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Radwaste Volume Comparison
(Actual volumes of components; not compacted, no replacements)
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What We Suggest

• Business as usual is not environmentally attractive option for fusion.
Something should be done.

• Fusion designs should adopt MRCB philosophy:

M – Minimize volume of active materials by clever designs

R  – Recycle, if economically and technologically feasible

C  – Clear slightly-irradiated materials
B  – Burn active fusion byproducts, if any, in fusion devices@.

_____________________
@  L. El-Guebaly,  “Managing Fusion High Level Waste – a Strategy for Burning the Long-Lived Products in Fusion Devices,” 
                                 Fusion Engineering and Design, 81 (2006) 1321-1326. 



8

Radwaste Minimization



9

ARIES Project Committed to
Radwaste Minimization

Tokamak waste volume
halved over 10 y study period

Stellarator waste volume
dropped by 3-fold

over 25 y study period
_____________________
* Actual volumes of components (not compacted, no replacements).
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ARIES Designs
(1988-2007)
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Disposal,  Recycling,
and  Clearance
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Disposal, Recycling, Clearance Approaches
Applied to Recent US Fusion Studies

(red indicates preference)

Components Recycle? Clear? Dispose of
 @ EOL?

MFE:
ARIES-CS@ all yes yes / no yes

 (as Class A & C LLW)

IFE:
ARIES-IFE Targets# no  yes / no yes

  (for economic reasons)  (as Class A LLW)

Z-Pinch-IFE RTL* yes yes yes
 (carbon steel) (a must requirement)  (as Class A LLW)

______________________________
@ L. El-Guebaly et al., “Designing ARIES-CS Compact Radial Build and Nuclear System: Neutronics, Shielding, and Activation,” to be published in

Fusion Science and Technology.
# L. El-Guebaly, P. Wilson, D. Henderson, and A. Varuttamaseni, “Feasibility of Target Materials Recycling as Waste Management Alternative,”

Fusion Science & Technology, 46, No. 3, 506-518 (2004).
*   L. El-Guebaly, P. Wilson, and M. Sawan,  “Activation and Waste Stream Analysis for RTL of Z-Pinch Power Plant,” to be published in Fusion

Science & Technology.
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Economics Prevent Recycling of
ARIES-IFE-HIB Hohlraum Wall

• Recycling of hohlraum walls doubles COE.
• Hohlraum walls represent < 1% of waste

stream.
• Once-through use generates Class A LLW.
• Target factory designers prefer dealing

with non-radioactive hohlraum wall
materials.

One-Shot Use Recycling
Scenario Scenario

Cost per Target $ 0.4 $ 3.15
Incremental Change to COE ~ 10 mills/kWh  ~ 70 mills/kWh
Cost of Electricity (COE)  ~ 70 mills/kWh  ~ 130 mills/kWh

Hohlraum WallFoams
DT

Capsule
(5 mm OD)

HIB

ARIES-IFE Target

2 cm

Preferred Option
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Recycling is a “Must” Requirement for RTL of Z-Pinch to
Minimize Radwaste Stream and Enhance Economics
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ARIES Compact Stellarator
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Blanket
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Vacuum
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LiPb/He/FS System.
7.75 m Major Radius.
2.6 MW/m2 Average NWL.
3 FPY Replaceable FW/Blanket.
40 FPY Permanent Components.
~78 mills/kWh COE ($2004).

ϕ = 0

ARIES-CS Cross Section @ ϕ = 0
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ARIES-CS LLW Classification
for Geological Disposal

All ARIES-CS
Components
(~8,000 m3)

Class A
Repository

Class C
Repository

~ 8 m below
ground surface> 8 m below

ground surface
+

Thick Concrete
Slab

Temporary
Storage

(up to 100 y)

≈

Class C Class A Could be
LLW LLW Cleared?

FW/Blkt/BW √ no

Shield/Manifolds √ no

Vacuum Vessel √ no

Magnet:
Nb3Sn √ no
Cu Stabilizer √  √
JK2LB Steel* √  √
Insulator  √  √

Cryostat  √  √

Bioshield  √  √

(~6,600 m3)
(82%)

(~1,400 m3)
(18%)

Least hazardous
type of waste

______
* Preferred over Incoloy-908 for clearance considerations.
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80% of ARIES-CS Active Materials can be
Cleared in < 100 y after Decommissioning
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All ARIES-CS Components can Potentially be
Recycled in < 1 y Using Advanced RH Equipment
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• Main contributor to dose of FS-based components: 54Mn from Fe
• At early cooling periods (<10 y), impurities have no contribution to recycling dose
• Developing advanced recycling tools could relax stringent specifications imposed

on fusion material impurities
• Development of such tools is foreseen to support fission GNEP initiative and

MOX fuel reprocessing system.
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Recycling & Clearance Flow Diagram
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General Observations

• US, EU, and J fusion studies indicated recycling and clearance are technically feasible,
providing effective means to minimize radwaste volume.

• They should be pursued despite lack of details at present.

• Fusion recycling technology will benefit from fission developments and
accomplishments in 50-100 y.

• Fusion materials contains tritium that may introduce serious complications to recycling
               ⇒ detritiation prior to recycling is necessary for fusion components.

• Several critical issues still need further investigation for all three options:
– Disposal
– Recycling
– Clearance
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Disposal Issues

• Large volume to be disposed of (7,000 - 8,000 m3 per plant, including
bioshield)

• Immediate or deferred dismantling?
• High disposal cost (for preparation, packaging, transportation, licensing,

and disposal).

• Limited capacity of existing LLW repositories
• Need for fusion-specific repositories designed for T-containing

activated materials
• Political difficulty of building new repositories
• Tighter environmental controls
• Radwaste burden for future generations.
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Recycling Issues

• Development of radiation-resistant RH equipment (10,000 Sv/h)*

• Large interim storage facility
• Energy demand for recycling process
• Cost of recycled materials
• Treatment and complex remote re-fabrication of radioactive materials
• Radiochemical or isotopic separation processes for some materials, if needed
• Efficiency of detritiation system
• Any materials for disposal?  Volume?  Radwaste level?
• Properties of recycled materials?  Any structural role?  Reuse as filler?
• Aspects of radioisotopes buildup by subsequent reuse and radiotoxicity

buildup
• Recycling plant capacity and support ratio
• Acceptability of nuclear industry to recycled materials
• Recycling infrastructure.

___________
* Ref.: R. Pampin, R.A. Forrest, R. Bestwick, Consideration of strategies, industry experience, processes and time scales for the

recycling of fusion irradiated material, UKAEA report FUS-539 (2006).
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Clearance Issues

______________________________
*  L. El-Guebaly, P. Wilson, and D. Paige,  “Evolution of Clearance Standards and Implications for Radwaste Management of Fusion Power Plants,”  
    Fusion Science & Technology,  49, 62-73 (2006).
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• Discrepancies between US-NRC & IAEA clearance standards*

• Impact on CI prediction of missing radioisotopes
(such as 10Be, 26Al, 32Si, 91,92Nb, 98Tc, 113mCd, 121mSn, 150Eu, 157,158Tb,
     163,166mHo, 178nHf, 186m,187Re, 193Pt, 208,210m,212Bi, and 209Po).

• Need for fusion-specific clearance limits

• Large interim storage facility

• Clearance infrastructure

• Availability of clearance market (some experience already exists in several E.U.
countries: Sweden, Germany, Spain, and Belgium.  Currently, U.S. industries do not
support unconditional clearance claiming it could erode public confidence in their
products and damage their markets).
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US Industrial Experience
with Recycling

• INL and industrial firm recycled activated Pb bricks for nuclear industry.
Cost of Pb LLW disposal was ~$5/pound while cost of recycling was
~$4.3/pound including fabrication into brick shapes.

     Savings:
– Recycling versus disposal cost
– Disposal volume
– Not requiring purchase of new Pb bricks.

• INL and industrial company fabricated shielding casks out of recycled SS:
– Casks were designed, built, and tested for strength and impact
– Slag from melting tends to collect some radionuclides

– Composition adjustments after slag removal produced metal alloys with
properties very similar to those of fresh alloys

– Prototype casks functioned well and are still in use since 1996.
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EU Recycling R&D Program

• Ongoing EU studies focus on R&D issues that should be addressed in order
to recycle as much materials as possible in safe, economical, and
environmentally friendly manner*.

• Studies comprise review of current status and state-of-the art methods to
recycle typical materials and components of EU Power Plant Conceptual
Studies (PPCS).

• Main conclusions:
– Recycling of fusion materials is a challenge.
– Material treatment includes detritiation, segregation of various materials,

cutting, crushing, melting, re-fabrication, refurbishing of liquid breeders,
and packaging/shipping.

– Solutions and routes to follow should be developed ASAP in order to
tackle arising issues.

___________
* Refs.: V. Massaut et.al., “State-of-the-Art of Fusion Material Recycling and Remaining Issues,” to be published n Fusion

Engineering & Design.
L.Ooms and V. Massaut, “Feasibility of Fusion Waste Recycling,” SCK-CEN Report, R-4056, 276/05-01 (2005).
R. Pampin, R.A. Forrest, R. Bestwick, “Consideration of Strategies, Industry Experience, Processes and Time Scales for
the  Recycling of Fusion Irradiated Material,” UKAEA report FUS-539 (2006).
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Recommendations

Regarding the huge amount of activated materials involved in fusion power plants,
Fusion designers should:

– Continue developing low-activation materials. Stringent specifications on impurities
could be relaxed by developing advanced recycling tools

– Minimize radwaste volume by clever design
– Promote environmentally attractive scenarios such as recycling and clearance,

avoiding geological burial
– Identified critical issues should be investigated for all three options
– Technical and economic aspects must be addressed before selecting most suitable

radwaste management approach for any fusion component.
Nuclear industry and organizations should:

– Continue developing advanced radiation-resistant remote handling equipment
capable of handling 10,000 Sv/h or more

– Accept recycled materials from dismantled nuclear facilities
– National and international organizations (US-NRC, IAEA, etc.) continue their

efforts to convince industrial and environmental groups that clearance can be
conducted safely with no risk to public health

– Regulatory agencies take into account fusion-specific and advanced nuclear
materials and issue official guidelines for unconditional release of clearable
materials.


