

D-³He Fueled Fusion Devices as Step Towards Total Fusion Safety

L. El-Guebaly and Fusion Technology Institute University of Wisconsin - Madison M. Zucchetti Politecnico di Torino Torino, Italy

ICENES – 2007

13th International Conference on Emerging Nuclear Energy Systems

June 3–8, 2007 Istanbul, Turkey

History & Background Info

- In late 1980s, fusion safety stimulated worldwide research for fuel cycles other than D-T.
- Advanced cycles (such as D-D, **D-**³**He**, p-¹¹B, and ³He-³He) do not require breeding large amount of T (~56 kg/y for 1 GW of D-T fusion power).
- Some advanced cycles (e.g., D-³He) are not completely aneutronic due to side D-D reactions.
- However, neutron wall loading can be kept low (by orders of magnitude) compared to D-T fueled plants with same output power.
- Attractive features for D-³He fuel cycle include:
 - No T breeding blanket.
 - All components are permanent, meaning no need to replace FW/shield during entire plant lifetime (~ 50 y).
 - Potential for direct energy conversion.
 - Low activity, decay heat, and radwaste levels.
 - Low releasable radioactive inventory from credible accidents.
- Concerns for D-³He fuel cycle :
 - ³He availability.
 - Higher plasma ion temp (50-100 keV) compared to D-T (10-20 keV).

Objectives

Apply most recent radwaste management schemes to D-³He fueled devices: <u>ARIES-III power plant</u> and <u>Candor experiment</u>^{*}.

• Compare radiological aspect of D-³He and D-T fuel cycles and highlight differences.

^{*} L. El-Guebaly and M. Zucchetti, "Recent Developments in Environmental Aspects of D-³He Fuelled Fusion Devices," Fusion Engineering and Design, vol. 82, # 4 (2007) 351-361.

Handling Fusion Radwaste is Important to Future of Fusion Energy

- Majority of fusion power plants designed to date focused on disposal of active materials in repositories, adopting fission waste management approach preferred in 1970's.
- **New Strategy**: Develop new framework for fusion:
 - Minimal amount should be disposed of in ground
 - Recycle and/or clear all active materials, <u>if technically and economically</u> <u>feasible</u>.
- Why?
 - Limited capacity of existing low-level waste repositories
 - Political difficulty of building new repositories
 - Tighter environmental controls
 - No long-lived radwaste burden for future generations.
- Impact: Promote fusion as nuclear source of energy with minimal environmental impact.

Fusion Designs Should Adopt MRCB Philosophy

- M Minimize volume of active materials by design
 <u>or</u> by employing advanced fuel cycle.
- \mathbf{R} Recycle, if economically and technologically feasible.
- **C** Clear slightly-irradiated materials.
- **B** Burn active byproducts, if any, in fusion devices^{*}.

^{*} L. El-Guebaly, "Managing Fusion High Level Waste – a Strategy for Burning the Long-Lived Products in Fusion Devices," *Fusion Engineering and Design*, **81** (2006) 1321-1326.

ARIES-III Power Plant Selected for Radwaste Assessment

ARIES-I

ARIES-III

SPPS

ARIES-RS

ARIES-III Power Plant

1000 MW_e Output Power 7.5 m Major Radius D-³He Neutron Source: 70% 2.45 MeV n's 30% 14.1 MeV n's 0.1 MW/m² Average NWL Ferritic Steel Structure Organic Coolant with 44% η_{th} 40 FPY Permanent Components 85% Availability

ARIES-III LLW Classification for Geological Disposal

85% of ARIES-III Radwaste can be Cleared in < 10 y after Decommissioning

10⁴

10³

IAEA

Innermost

Segment of

All ARIES-III Components can be Recycled in < 1 y Using Advanced and Conventional RH Equipment

Comparison of D-³He and D-T Fueled Power Plants of Comparable Major Radii

ARIES-III radwaste inventory is ~50% of ARIES-CS'

Candor Experiment

Candor Specific Activity

Hands-on Recycling of Candor Components is Feasible within 10-30 y

All Candor Components can be Cleared in 50-100 y

Conclusions

- Recycling and clearance of all components should be essential goal of fusion studies to minimize radwaste stream.
- Advanced D-³He fuelled designs offer further step toward intrinsic safety and environmental goals.
- For D-³He fuelled ARIES-III power plant:
 - All in-vessel components qualify as Class A waste, the least hazardous type based on U.S. guidelines.
 - All components can be recycled using conventional and advanced remote handling equipment.
 - Bioshield contains traces of radioactivity and can be cleared from regulatory control after relatively short period of time (~ 10 y).
- D-³He fuelled Candor experiment reaches zero-waste option as all wastes can be cleared within 100 y.
- Low neutron production of D-³He fuel helps overcome some of engineering and material hurdles to fusion development.
- Advanced fuel cycle development should be carried out in parallel with current mainstream fusion pathway that primarily focuses on D-T tokamaks.