

ARIES-DB Design Issues

L. El-Guebaly

University of Wisconsin-Madison

Contributors:

P. Batistoni (ENEA, Italy) and C. Kessel (PPPL)

ARIES-Pathways Project Meeting December 15 - 16, 2009 GA, San Diego

Contents

• TBR-related issues – what's new?

• ITER reweldability limits for 316-SS – an update.

• OB DCLL blanket segmentation – a suggestion.

• Degradation of physical properties with neutron irradiation – few examples.

TBR-Related Issues

What's new?

- T cost to supply 1% deficiency in breeding.
- New experimental results measuring LiPb tritium production rate (TPR).
- Impact of "plasma burn-up fraction" on TBR requirements.
- Net TBR comparison: ARIES vs UCLA.
- Li content in LiPb eutectic. 17 at% or 15.7 at%?

T cost to Supply 1% Deficiency in Breeding

- T cost is excessive:
 - \$30,000 / g of T Canada
 - > \$30,000 / g of T US (including shipping/handling)
- 1% less breeding \Rightarrow Shortage of ~1 kg of T/y* for 2 GW P_f
- Cost of purchasing T exceeds \$100,000/day.

Calculated TBR should be accurately estimated to avoid purchasing T during operation

^{*} Based on 55.6 kg/y per GW P_f...

TBR Requirements

Background info:

- ARIES designs considered <u>Calculated TBR of 1.1 for liquid breeders</u>
- Breeding margin (TBR -1) divided into 4 categories:
 - Margin for known deficiencies in nuclear data (6*-10%)
 - Margin for known deficiencies in modeling (3*-7%)
 - Margin for <u>unknown</u> uncertainties in <u>design elements</u> (0*-3%)
 - Margin for <u>T bred in excess of T consumed</u> in plasma (1*-2%).

• New evaluation/assessment:

- FNG experimental measurement of LiPb tritium production rate (Margin # 1)
- Sensitivity of "excess T bred" to "plasma burn-up fraction" (Margin # 4).

^{*} Considered for ARIES LiPb designs.

FNG Experiment @ ENEA Italy

B. Batistoni et al., "Neutronics Experiments on HCPB and HCLL TBM Mock-ups in Preparation of Nuclear Measurements in ITER," <u>Presented at ISFNT-9</u>, Oct. 11-16, 2009, Dalian, China.

LiPb obtained from Fusion for Energy had much lower lithium content (0.28 wt%) than expected for Li₁₇Pb₈₃ (0.68 wt%).

Calculations correctly estimate TPR within total experimental uncertainty (~7% - too large). <u>Future experiments will reduce</u> uncertainties in:

- Experimental results
- Measurement of Li content in LiPb.

These results suggest reducing TBR margin for nuclear data deficiencies from 6% to 3% until FNG conducts new LiPb experiments with more accurate measurements.

⇒ Reduce required calculated TBR from 1.1 to 1.07

Plasma Burn-up Fraction Has **NO** Major Impact on "Excess T" Bred for Start-up of New ARIES-AT-type Plant

- Startup inventory of T for new power plant depends on burn-up fraction (f_b).
- Low f_b means:
 - High startup inventory, or
 - Long doubling time $(t_d = 1-5y)$ (defined as time needed to supply new power plant with start-up T).
- If new design calls for lower f_b , <u>ARIES prefers using t_d as knob to meet breeding requirements.</u>
- Generating <u>excessive T</u> causes serious <u>storage problem</u> and raises licensing concerns.
- Note that:
 - CANDUE will produce 25 kg of T by 2025
 - Currently, PPPL is licensed for only 5 g of T
 - 4 kg of T in ITER, per N. Taylor.

Plasma Burn-up Fraction Has **NO** Major Impact on "Excess T" Bred for Start-up of New ARIES-AT-type Plant (Cont.)

• Per C. Kessel:

- f_b is proportional to "particle confinement time" (τ) [difference between time of T injected into plasma and time of T lost out of plasma].
- $-\tau^*$ accounts for recycling of T from walls back into plasma.
- $-\tau^* > \tau$.
- Which confinement time should we use to estimate t_d ? τ or τ^* ?
- In ARIES-AT, we used τ^* : $f_b = 36\%$ and $t_d = 2.4$ y.
- Using τ , $f_b = 15\%$ and $t_d = 4 y$ (still < 5 y).

Net TBR Comparison: ARIES vs UCLA

Remarks on TBR Requirements

- Serious effort should be made to reduce breeding requirements (i.e., Net TBR and all uncertainties).
- <u>Unnecessary high breeding requirements</u> already <u>drew criticism</u> for fusion.
- M. Dittmar (Zurich) reported in "The Oil Drum: Europe (11/10/09):
 - The list of fusion problems is already very long and shows that the <u>belief in a self-sufficient</u> <u>tritium chain in completely unfounded</u>
 - Experiments show that <u>measured TBR</u> results are consistently ~15% lower than the <u>modeling predicts</u> (Sawan and Abdou FED paper, 2006)
 - One might <u>conclude</u> that today's experiments show consistently that <u>no window for self-sufficient breeding</u> currently exists and suggest that proposal that speak of future <u>T breeding are based on nothing more than hopes, fantasies, misunderstandings, or even international misrepresentations.
 </u>
- Advanced physics and technology should reduce breeding margin below 7%, (as ARIES suggests) through:
 - High burn-up fraction > 10%
 - More accurate measurement of LiPb TPR
 - Careful choice of design elements that degrade breeding (FW thickness, stabilizing shell materials and location, etc.)
 - State-of-the-art 3-D neutronics models using CAD-MCNP interface.

Li₁₇Pb₈₃ or Li_{15.7}Pb_{84.3}?

Reference:

- P. Hubberstey et al., "<u>Is Pb-17Li really the eutectic alloy</u>? A redetermination of the lead-rich section of the Pb-Li phase diagram $(0.0 < x_{Li}(at\%) < 22.1)$," Journal of Nuclear Materials 191-194 (1992) 283-287.
- Single LiPb liquid phase is maintained over wide range from 13.7 to 18 at% Li.
- LiPb eutectic lies at 15.7 at% Li, not 17 at%.
- T solubility in LiPb is sensitive to Li content.
- Should ARIES-DCLL design consider Li_{15.7}Pb_{84.3} instead of Li₁₇Pb₈₃?
- If so, its *minor* impact on TBR will be determined.

ITER Reweldability Limits for 316-SS

< 1 He appm for **thick plate** welding

< 3 He appm for **thin plate** or **tube** welding

Reference: ITER Nuclear Analysis Report G 73 DDD 2 01-06-06 W 0.1 - Section 2.5.1, page 15.

- Double-walled vacuum vessel with internal ribs:
 - ITER: **6 cm** plate of <u>316-SS</u> and 1 appm limit
 - ARIES: **2 cm** plate of <u>FS</u> and 1 appm limit.

- Should ARIES:
 - Adopt ITER higher limit for thinner <u>FS</u> plate? or,
 - Revisit ARIES VV design?

Segmentation of OB DCLL Blanket

- T breeding calls for <u>fairly thick OB blanket</u> (80 cm).
- Possible location for OB stabilizing shell is behind OB blanket (undesirable for advanced physics).
- Advantages of blanket segmentation:
 - Place stabilizing shells between blanket segments to enhance physics
 - Replace outer segment less frequently:
 - Reduce replacement cost
 - Minimize radwaste stream.
- Concerns:
 - Neutron streaming through assembly gap shortens lifetime of outer segment
 - Sensitivity of stabilizing shells to n streaming (swelling, electric resistivity, etc.)
- Suggestion:
 - Provide right-angle bend gaps with WC shield insert (as proposed for IB).
- Question:
 - How to protect <u>toroidally continuous</u> IB & OB shells against streaming neutrons?
- Several iterations between physics and engineering will determine:
 - Optimum IB & OB shell locations
 - Size of OB blanket segments
 - Impact of shells on TBR.

Degradation of Physical Properties with Neutron Irradiation – Few Examples

Fig. 3. Thermal conductivity of the materials as a function of the temperature after irradiation at 775°C/0.35 dpa g. Ref.: Neutron Irradiation Effects on Carbon Based Materials at 350°C and 800°C, J.P. Bonal, C.H. Wu, Journal of Nuclear Materials, 277 (2000) 351-359.

Fig. 1. Radiation induced conductivity measured in alumina during electron [1,2], proton [3,5] and fission neutron [4] irradiation.

Ref.: Investigation of Radiation Induced Electrical Degradation in Alumna Under ITER-Relevant Conditions L.L. Snead et al., Journal of Nuclear Materials, 226 (1995) 58-66

Fig. 4. Normalised thermal conductivity of different CFCs as a function of damage dose [45,53,59–63].

Ref.: Neutron Irradiation Effects on Plasma Facing Materials, V. Barabash et al., Journal of Nuclear Materials, 283-287 (2000) 138-146.

Fig. 3. Thermal conductivity vs. neutron dose for polycrystal-line $\rm Si_3N_4$ and AlN irradiated at either 60 °C or 300 °C.

Ref.: Thermal conductivity degradation of ceramic materials due to low temperature, low dose neutron irradiation, L.L. Snead, S.J. Zinkle, D.P. White, Journal of Nuclear Materials, Volume 340, Issues 2-3, 15 April 2005, Pages 187-202

- Available data show <u>consistent degradation</u> of thermal and electric properties <u>with irradiation</u>.
- Most published <u>data are for ITER's</u> materials irradiated at low fluences.
- No data available for ARIES materials at high fluences of power plants.
- ARIES analysis should <u>consider some degradation</u> of thermal and electric properties. How much?