

ARIES-ACT-DCLL NWL Distribution and Revised Radial Build

L. El-Guebaly and A. Jaber

Fusion Technology Institute University of Wisconsin-Madison

http://fti.neep.wisc.edu/UWNeutronicsCenterOfExcellence

Contributors:

L. Carlson, X. Wang, S. Malang (UCSD), C. Kessel (PPPL)

> ARIES Project Meeting Gaithersburg, MD July 27 - 28, 2011

Neutron Wall Loading Distribution

ARIES-ACT-DCLL Parameters (aggressive physics)

Fusion Power 2767 5 MW

Major Radius 6 m

Minor Radius 1.5 m

Elongation 2 2

Plasma surface area = 565 m^2

Surface area @ $10 \text{ cm from plasma} = 588 - 599 \text{ m}^2$

Average NWL @ 10 cm from plasma = 3.7 - 3.77 MW/m²

OB FW area = 350 m^2

IB FW area = 180 m^2

Curved IB FW offers 10 cm more space at top/bottom for IB manifolds

ARIES-ACT-DCLL FW and Div

(Courtesy of X. Wang (UCSD))

Neutron Wall Loading 3-D Model

NWL Distribution

Peak Γ @ IB 4 x 1.1 = 4.4 MW/m²

Peak Γ @ OB 5.5 MW/m²

Peak Γ \bigcirc Div 2.2 MW/m²

Peak to av. NWL ≈ 1.5

Too high for DCLL blanket, per S. Malang.

Revised Radial Builds:

- Inboard
- Outboard
- Divertor.

Initial Radial Builds

Thicker blankets (0.65 m on IB and 1 m on OB) mandate redefining thicknesses and compositions of non-breeding components to satisfy design requirements and radiation limits.

Major Changes/Additions to Radial Builds

- Thicker IB Back Wall to protect Skeleton Ring for plant life:
 - ⇒ no need for replaceable HT shield.
- Reweldable back of Skeleton Ring (at least 20 cm thick).
- Reweldable VV everywhere including IB. (None of previous ARIES design had reweldable IB VV at midplane).
- Exclude materials with high decay heat to control temperature during LOCA:
 - ⇒ no WC filler in IB VV
 - ⇒ no W (or WC) for Shielding Block behind IB assembly gaps.
- 2 cm thick He-cooled Thermal Shield between VV and magnets.

Changes lead to larger radial builds

ARIES-ACT-DCLL Radiation Limits

Calculated Overall TBR Net TBR (for T self-sufficiency)	1.1 ~1.01	
Damage to Structure (for structural integrity)	200 ???	dpa - advanced FS W structure
Helium Production @ Manifolds & VV (for reweldability of FS structure)	1	He appm
LT S/C Magnets (@ 4 K): Peak fast n fluence to Nb ₃ Sn (E _n > 0.1 MeV) Peak nuclear heating Peak dpa to Cu stabilizer Peak dose to GFF polyimide insulator	$ \begin{array}{c} 10^{19} \\ 2 \\ 6x10^{-3} \\ < 10^{11} \end{array} $	n/cm ² mW/cm ³ dpa rads
Plant Lifetime	40	FPY
Availability	85%	
Operational Dose to Workers and Public	< 2.5	mrem/h

ARIES-ACT-DCLL IB Radial Build

(Peak IB $\Gamma = 4.4 \text{ MW/m}^2$)

Vacuum Vessel:

2 cm thick face sheets.

Space in between filled with:

15% steel structure, 25% B-steel, 60% water.

Permanent component (16 dpa peak).

Reweldable (1 He appm peak).

Impact of n streaming through gaps TBD.

Skeleton Ring:

20% FS, 20% He, 60% B-FS.

Permanent component (185 dpa peak).

Reweldable at back.

Impact of n streaming through gaps TBD.

1(

Two OB Cross Sections

ARIES-ACT Cross Section I underneath magnet: Shield and VV only. 20 cm Skeleton Ring No blanket. TBD with 3-D analysis. FW/Blanket-FW/Blanket-I-Outer TF Coil Legs Vacuum Vesse Maintenance Port **Shield Plug Cross Section II** between magnets: Blanket, SR, mnflds, and Shield Plug. SR These components along with port walls protect sides of 20 cm thick Manifolds for OB blanket, 7 magnets. upper divertor, and upper This should be confirmed with half of IB blanket 3-D analysis. 11

ARIES-ACT-DCLL OB Radial Build

Underneath Magnet (Peak IB $\Gamma = 5.5 \text{ MW/m}^2$)

Cross Section I

HT Shield:

80% FS, 20% He, 60% B-FS Replaceable and permanent components. Thicknesses TBD with 3-D analysis to account for n streaming through assembly gaps.

Vacuum Vessel:

2 cm thick face sheets.

Space in between filled with:

15% steel structure, 25% B-steel, 60% water.

Permanent component?

Reweldable?

Impact of n streaming through gaps TBD.

ARIES-ACT-DCLL OB Radial Build

Between Magnets (Peak IB $\Gamma = 5.5 \text{ MW/m}^2$)

Cross Section II

Skeleton Ring/Manifolds:

SR: 80% FS, 20% He.

Permanent components (40 dpa peak).

Reweldable manifolds (0.2 He appm peak).

Impact of n streaming through gaps TBD.

Shield Plug:

2 cm thick face sheets (like VV). Space in between filled with:

15% steel structure, 25% B-steel, 60% water Permanent component (4 dpa peak). Reweldable (0.08 He appm peak). Impact of n streaming through gaps TBD.

ARIES-ACT-DCLL Div Radial Build

(Peak div $\Gamma = 2.2 \text{ MW/m}^2$)

Vacuum Vessel:

2 cm thick face sheets. Space in between filled with:

15% steel structure, 25% B-steel, 60% water. Permanent component (1.6 dpa peak) Reweldable (0.34 He appm peak). Impact of n streaming through gaps and pumping ducts TBD.

Skeleton Ring/Manifolds:

SR: 80% FS, 20% He, 60% B-FS.
Permanent SR (180 dpa peak).
Reweldable manifolds (1 He appm peak).
Impact of n streaming through gaps and pumping ducts TBD.

HT Shield:

80% FS, 20% He, 60% B-FS Replaceable every 5 FPY. Impact of n streaming on lifetime TBD. Magnet is well protected behind bulk shield, away from assembly gaps and div pumping ducts.

122 cm, w/o gaps $(\Delta = + 24 \text{ cm})$

IB Blanket Composition
(75 cm thick)

	Thickness (cm)	Composition (volume %)
FW	3.8	8% ODS FS 27% MF82H FS, 65% He
Breeding Zone	58.2	77% LiPb (70% enriched Li) 7% MF82H FS, 3.7% SiC, 12.3% He/void (LiPb @ 580 °C; 9 g/cm ³ density; Li _{15.7} Pb _{84.3})
Back Wall	13	80% MF82H FS, 20% He
Alternate FW design with W	3.8	8.2% W, 8.3% ODS-FS, 22.4% MF82H FS, 61.1% He

OB Blanket Composition
(1 m thick)

	Thickness (cm)	Composition (volume %)
Blanket-I: FW	3.8	8% ODS FS 27% MF82H FS, 65% He
Breeding Zone-I	33.2	77.2% LiPb (70% enriched Li) 7% MF82H FS, 4.2% SiC, 11.6% He/void (LiPb @ 580 °C; 9 g/cm³ density; Li _{15.7} Pb _{84.3})
Back Wall	3	80% MF82H FS, 20% He
Alternate FW design with W	3.8	8.2% W, 8.3% ODS-FS, 22.4% MF82H FS, 61.1% He
Blanket-II: Front Wall	3	same as Back Wall
Breeding Zone-I	54	78.4% LiPb (70% enriched Li) 8.3% MF82H FS, 3.9% SiC, 9.4% He/void (LiPb @ 580 °C; 9 g/cm³ density; Li _{15.7} Pb _{84.3})
Back Wall	3	80% MF82H FS, 20% He

1

Magnet Composition

	Thickness (cm)	Composition (volume %)
He-cooled Thermal Shield	2	20% steel, 80% He (@ 80-100 k)
Coil Case	3	95% JK2LB steel, 5% LHe
Winding Pack (from C. Kessel)	50	70% JK2LB steel, 13% Cu, 2% Nb ₃ Sn, 10% LHe, 2.5% GFF Polyimide

Magnet dimension and composition disagree with ASC ?!

@ IB midplane:

1 He appm

16 dpa (not behind assembly gaps)

He/dpa = 0.06

VV Radiation Damage @ 40 FPY

(behind bulk blanket and shield, away from assembly gaps and penetrations)

10

12

@ Top/Bottom:

0.34 He appm

1.6 dpa

(not behind pumping ducts)

He/dpa = 0.2

@ OB midplane:

? He appm @ VV ? dpa @ VV

He/dpa = ? for VV

a Shield Plug:

0.08 He appm 4 dpa

He/dpa = 0.02

This vertical cross section is misleading!
Only shield for Xn through VV and magnet.
NO VV and magnet behind OB blanket.

Streaming Concerns

- With 3-D analysis, effect of neutron streaming on damage level should be assessed for:
 - Shield
 - Skeleton ring
 - Vacuum vessel
 - Stabilizing shell.
- ARIES-ACT-DCLL has several streaming problems due to:
 - Assembly gaps:
 - Horizontal/radial gap at IB midplane
 - Radial/poloidal assembly gaps between IB modules
 - Radial/poloidal assembly gaps between OB modules (blue wedged shape shield in ARIES-AT is **inefficient** and will be redesigned)
 - Radial/poloidal assembly gaps between divertor plates.
 - Large penetrations:
 - Plasma control
 - Fueling
 - Diagnostics
 - Divertor pumping ducts.

Examples of Neutron Streaming Effect

2 cm Wide Assembly Gaps increase He by > 1000 and dpa by > 4

Ongoing study

Final Remarks

- 3-D shielding/streaming analysis will be performed to:
 - Develop OB cross-section underneath magnet
 - Map radiation damage poloidally and toroidally, taking into consideration effect of neutron streaming through assembly gaps and large penetrations.
- <u>FS-based designs</u> should avoid using materials with relatively high decay heat (such as
 W and Mn-based steels) in order to control thermal response during transients (such as LOCA).
- Designing W-free Shielding Block behind assembly gaps is challenging!
- Seeking novel ideas to conduct/radiate decay heat to surroundings particularly for IB components.
- Q: type of steel for ARIES VV and Thermal Shield?