

Overview of ARIES-CS In-Vessel Components: Integration of Nuclear, Economics, and Safety Constraints in Compact Stellarator Design

L. El-Guebaly,

R. Raffray, S. Malang. J. Lyon, L.P. Ku, X. Wang, L. Bromberg, P. Wilson, D. Henderson, T. Tautges, M. Sawan, G. Sviatoslavsky, B. Kiedrowski, R. Slaybaugh, A. Ibrahim, M. Wang, C. Martin,

B. Merrill, L. Waganer, F. Najmabadi, and the ARIES Team

Fusion Technology Institute University of Wisconsin - Madison http://fti.neep.wisc.edu/UWNeutronicsCenterOfExcellence

17th ANS Topical Meeting on the Technology of Fusion Energy November 13 – 15, 2006 Albuquerque, NM

ARIES Compact Stellarator*

Study aimed at reducing stellarators' size by:

- Developing compact configuration with low aspect ratio and advanced physics & technology
- Optimizing minimum plasma-coil distance (Δ_{\min}) through rigorous nuclear assessment.

3 Field Periods Configuration#Average Major Radius7.75 m

Average Minor Radius	1.7 m
Aspect Ratio	4.5
Fusion Power	2400 MW
Average NWL	2.6 MW/m ²
Net Electric Power	1000 MW _e
COE (\$2004)	~83 mills/kWh

* F. Najmabadi, "Overview of ARIES-CS Compact Stellarator," Plenary Session, Monday @ 3 PM.

[#] J. Lyon et al., "Optimization of the ARIES-CS Compact Stellarator Power Plants Parameters," ARIES-CS Oral Session, Tuesday @ 8 AM.

L.P. Ku, "Configuration Optimization and Physics Basis of ARIES-CS," ARIES-CS Oral Session, Wednesday @ 1 PM.

ARIES-CS Nuclear Areas of Research

Nuclear Task Involves Active Interaction with many Disciplines

THE UNIVERSITY

Stellarators Offer Unique Engineering Features and Challenges

- Minimum radial standoff at Δ_{\min} controls machine size and cost. \Rightarrow Well optimized radial build particularly at Δ_{\min}
- Sizable components with low shielding performance (such as He manifolds) should be avoided at Δ_{\min} .
- Could design tolerate non-uniform blanket/shield at Δ_{\min} ? Impact on TBR, overall size, and economics?
- Compactness mandates all components should provide shielding function:
 - Blanket protects shield
 - Blanket and shield protect manifolds and VV
 - Blanket, shield, and VV protect magnets.
- Highly complex geometry mandates developing new approach to directly couple CAD drawings with 3-D MCNP neutronics code.
- Economics and safety constraints control design of all components from beginning.

Reference Dual-cooled LiPb/FS Blanket Selected with Advanced LiPb/SiC as Backup*

	Breeder	<u>Multiplier</u>	<u>Structure</u>	<u>FW/Blanket</u>	<u>Shield</u>	
		Coolant	Coolant			Coolant
In	ternal VV [@] :					
	Flibe	Be	FS	Flibe	Flibe	H ₂ O
	LiPb (backup)	-	SiC	LiPb	LiPb	H ₂ O
	LiPb (reference)	-	FS	He/LiPb	Не	H ₂ O
	Li ₄ SiO ₄	Be	FS	He	Не	H ₂ O
Ex	ternal VV [#] :					
	LiPb	_	FS	He/LiPb	He or H_2O	He
	Li	_	FS	He/Li	He	He

* R. Raffray, L. El-Guebaly et al., "Engineering Design and Analysis of the ARIES-CS Power Plant," ARIES-CS Oral Session, Tuesday @ 8 AM.

@ VV inside magnets.

VV outside magnets.

ARIES-CS Requirements Guide In-vessel Component Design

Overall TBR (for T self-sufficiency)	1.1	
Damage to Structure (for structural integrity)	200	dpa - advanced FS
Helium Production @ Manifolds and VV (for reweldability of FS)	1	He appm
S/C Magnet (@ 4 K): Peak Fast n fluence to $Nb_3Sn (E_n > 0.1 MeV)$ Peak Nuclear heating Peak dpa to Cu stabilizer Peak Dose to electric insulator	10^{19} 2 6x10 ⁻³ > 10 ¹¹	n/cm ² mW/cm ³ dpa rads
Plant Lifetime	40	FPY
Availability	85%	
Operational dose to workers and public	< 2.5	mrem/h

FW Shape Varies Toroidally and Poloidally: Challenging 3-D Modeling Problem

8

UW Developed CAD/MCNP Coupling Approach to Model ARIES-CS for Nuclear Assessment

- Only viable approach for ARIES-CS
 3-D neutronics modeling*.
- Geometry and ray tracing in CAD; radiation transport physics in MCNPX.

^{*} P. Wilson, T. Tautges, M. Sawan, L. El-Guebaly, D. Henderson, G. Sviatoslavsky, B. Kiedrowski, A. Ibrahim, "Innovations in 3-Dimensional Neutronics Analysis for Fusion Systems," Computational Tools and Validation Experiments Session - Tuesday at 3 PM.

Neutron Wall Loading Distribution*

P. Wilson, B. Kiedrowski, L. El-Guebaly, T. Tautges, G. Sviatoslavsky, J. Lyon, and X. Wang, "Three-Dimensional Neutronics Analysis of ARIES-CS Using CAD-based Tools," ARIES-CS Oral Session - Tuesday at 8 AM. **10**

Well-Optimized Blanket & Shield Protect Vital Components (5.3 MW/m² Peak Γ)

High Performance Components at Δ_{min} Help Achieve Compactness, Minimize Major Radius, and Enhance Economics

12

Tritium Breeding Requirement Determined Minimum Major Radius

• Designs with R < 7.5 m will not provide T self-sufficiency.

Reference Blanket Breeds Sufficient Tritium for R = 7.75 m Machine

- Overall **TBR slightly exceeds 1.1** based on 1-D estimate ۲
- **3-D model** includes essential components for TBR: •
 - Non-uniform and full blanket/shield
 - FW/Blanket/BW – Homogenized:
 - Shield
- **3-D** analysis is underway. ۲

Neutron Streaming Through Penetrations Compromises Shielding Performance

• 7 types of penetrations:

- 198 He tubes for blanket (32 cm ID)
- 24 Divertor He access pipes (30-60 cm ID)
- 30 Divertor pumping ducts (42 x 120 cm each)
- 12 Large pumping ducts (1 x 1.25 m each)
- 3 ECH ducts (24 x 54 cm each).
- 6 main He pipes HX to/from blanket (72 cm ID each)
- 6 main He pipes HX to/from divertor (70 cm ID each)

• **Potential solutions**:

- Local shield behind penetrations
- He tube axis oriented toward lower neutron source
- Penetration shield surrounding ducts
- Replaceable shield close to penetrations
- Avoid rewelding VV and manifolds close to penetrations
- Bends included in some penetrations.

3-D Assessment of Streaming Through Divertor He Access Pipe

ATTILA 3-D Model

Neutron Flux Distribution

Ongoing analysis will confirm protection of surrounding components

Sliding

Seal

Shielding

Shielding Ring

Ribs Connecting Inner Tube, Shielding Ring and Shielding

Block into a Single Assembly

0.5

1.0 m

Block

Plasma

Shield Attached

to Blanket

Blanket

Shield

Manifold

Vacuum Vessel

Magnet

Key Nuclear Parameters

Peak NWL Average NWL Peak to Average NWL	5.3 MW/m ² 2.6 MW/m ² 2
Overall TBR	~ 1.1*
FW/blanket Lifetime	3 FPY
Shield/manifold/VV/magnet Lifetime	40 FPY
Overall Energy Multiplication	1.16*
Δ_{\min}	1.3 m
Δ_{\max}	1.8 m

^{*} To be confirmed with ongoing 3-D analysis.

ARIES-CS Major Radius Approaches R of Advanced Tokamaks

Well optimized radial build along with advanced physics helps reduce ARIES-CS size

ARIES Project Committed to Waste Minimization

Activation and Environmental Issues

In-vessel Components Exhibit Structural Integrity during LOCA/LOFA Event*

- Design Base Accident scenario: He LOCA and LiPb LOFA in **all** modules and water LOFA in VV.
- Plasma stays on for 3 seconds after onset of LOCA/LOFA.
- Peak temperature remains below 740°C reusability limit for ferritic steel.

^{*} C. Martin and L. El-Guebaly, "ARIES-CS Loss of Coolant and Loss of Flow Accident Analyses," ARIES-CS Oral Session - Tuesday at 8 AM.

ARIES-CS Generates Only Low-Level Waste

80% of ARIES-CS Active Materials can be Cleared in < 100 y after Decommission

23

THE UNIVERSITY WISCONSIN MADISON

All ARIES-CS Components can be Recycled in 1-2 y Using Advanced and Conventional RH Equipment^{*}

FS-based components:

- ⁵⁴Mn (from Fe) is main contributor to dose.
- Store components for few years to decay before recycling.
- After several life-cycles, advanced RH equipment could handle shield, manifolds, and VV.

SiC-based components:

- ^{58,60}Co, ⁵⁴Mn, and ⁶⁵Zn contributors originate from impurities.
- Strict impurity control may allow hands-on recycling.

^{*} L. El-Guebaly, "Environmental Benefits and Impacts of the Radwaste Management Approaches: Disposal, Recycling, and Clearance," Waste Management Oral Session - Radwaste Management Session, Wednesday at 10 AM.

Conclusions

- Novel approach developed for ARIES-CS helps reduce radial standoff, major radius, and overall cost by 25-30%.
- Radial build satisfies design requirements in terms of breeding sufficient tritium and shielding vital components.
- First time ever complex stellarator geometry modeled for nuclear assessment using UW newly developed CAD/MCNP coupling approach.
- Activation and environmental assessment indicates:
 - Structural integrity during LOCA/LOFA events ($T_{max} < 740^{\circ}C$)
 - In-vessel components can be recycled in few years using advanced RH equipment
 - Majority of waste (80%) can be cleared from regulatory control within 100 y
 - Substantial reduction in radwaste stream compared to previous stellarator designs.