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ARIES Compact Stellarator”

Study aimed at reducing stellarators’ size by:

— Developing compact configuration with low
aspect ratio and advanced physics &
technology

— Optimizing minimum plasma-coil distance

(A,;,,) through rigorous nuclear assessment.

3 Field Periods Configuration”

Average Major Radius 7.75 m

Average Minor Radius 1.7 m

Aspect Ratio 4.5

Fusion Power 2400 MW

Average NWL 2.6 MW/m?

Net Electric Power 1000 MW,

COE ($2004) ~83 mills/kWh
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* F. Najmabadi, “Overview of ARIES-CS Compact Stellarator,” Plenary Session, Monday @ 3 PM.
# J. Lyon et al., “Optimization of the ARIES-CS Compact Stellarator Power Plants Parameters,” ARIES-CS Oral Session, Tuesday @ 8§ AM.
L.P. Ku, “Configuration Optimization and Physics Basis of ARIES-CS,” ARIES-CS Oral Session, Wednesday @ 1 PM.
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W ARIES-CS Nuclear Areas of Research

THE UNIVER SITY

WISCONSIN

MMMMMMM

Radial Build Definition:
— Dimension of all components
— Optimal composition

Neutron Wall Loading Profile:
— Toroidal & poloidal distribution
— Peak & average values

High-Performance

Shielding Module at A .

Activation Issues:
— Activity and decay heat
— Thermal response during
LOCA/LOFA events
— Radwaste classification &
management

Blanket Parameters:
— Dimension
— TBR, enrichment, M|
— Nuclear heat load
— Damage to FW
— Service lifetime

=l

| Radiation Protection:

— Shield dimension & optimal
composition

— Damage profile at shield,
manifolds, VV, and magnets

— Streaming issues

— Workers and public protection




w Nuclear Task Involves Active
EEEEEEEEE Interaction with many Disciplines
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Prelim. Physics Desi
(R, a, Py, A, plasma esign Blanket Concept
contour, magnet CL) Requirements
(P
Init. Magnet>
NWL Profile 1-D Nuclear Analysis Parameters
(I" peak, average, ratio) (A, TBR, M,, damage, lifetime)

min’ Init. Divertor
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r [ ] [ ] [ ] [ ]
Radial Build Definition
no A, match .
< @ A, and elsewhere 3-D Neutronics

or insufficient breeding (Optimal dimension and composition, (Overall TBR, M,)

. blanket coverage, thermal loads ) T
{1 i
Activation Assessment : Systems Code :
ADD
(Activity, decay heat, LOCA/LOFA, Blanket Design (R, a, Py C rawings
Radwaste classification) )
!
Safety Analysis




W Stellarators Offer Unique Engineering

Wischren Features and Challenges
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* Minimum radial standoff at A_. controls machine size and cost.
=> Well optimized radial build particularly at A .

* Sizable components with low shielding performance (such as He manifolds) should be
avoided at A . .

* Could design tolerate non-uniform blanket/shield at A_. ? Impact on TBR, overall
size, and economics?

* Compactness mandates all components should provide shielding function:
— Blanket protects shield
— Blanket and shield protect manifolds and VV
— Blanket, shield, and VV protect magnets.

e Highly complex geometry mandates developing new approach to directly couple CAD
drawings with 3-D MCNP neutronics code.

e Economics and safety constraints control design of all components from beginning.



@ Reference Dual-cooled LiPb/FS Blanket

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ Selected with Advanced LiPb/SiC as Backup®

WISCONSIN
Breeder Multiplier Structure FW/Blanket Shield VvV
Coolant
Coolant Coolant
Internal VV@:
Flibe Be FS Flibe Flibe H,O
LiPb (backup) - SiC LiPb LiPb H,0
LiPb (reference) - FS He/LiPb He H,0
Li,Si0, Be FS He He H,O
External VV#;
LiPb — FS He/LiPb He or H,O He
Li — FS He/Li1 He He

* R. Raffray, L. EI-Guebaly et al., “Engineering Design and Analysis of the ARIES-CS Power Plant,” ARIES-CS Oral Session, Tuesday @ 8§ AM.
@ VYV inside magnets.
# VYV outside magnets.
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W ARIES-CS Requirements Guide

Wischmen In-vessel Component Design

MMMMMMM

Overall TBR 1.1
(for T self-sufficiency)

Damage to Structure 200 dpa - advanced FS

(for structural integrity)

Helium Production @ Manifolds and VV 1 He appm
(for reweldability of FS)

S/C Magnet (@ 4 K):

Peak Fast n fluence to Nb,Sn (E > 0.1 MeV) 101 n/cm?
Peak Nuclear heating 2 mW/cm?
Peak dpa to Cu stabilizer 6x10-3 dpa
Peak Dose to electric insulator > 10" rads
Plant Lifetime 40 FPY
Availability 85%
Operational dose to workers and public <2.5 mrem/h
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FW Shape Varies Toroidally and Poloidally:
Challenging 3-D Modeling Problem

Z[m]

ARIES-CS Plasma and Co
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W Developed CAD/MCNP Coupling Approach to
Model ARIES-CS for Nuclear Assessment

e Only viable approach for ARIES-CS
3-D neutronics modeling”.

 Geometry and ray tracing in CAD;

radiation transport physics in
MCNPX.

*  P. Wilson, T. Tautges, M. Sawan, L. El-Guebaly, D. Henderson, G. Sviatoslavsky, B.
Kiedrowski, A. Ibrahim, “Innovations in 3-Dimensional Neutronics Analysis for Fusion
Systems,” Computational Tools and Validation Experiments Session - Tuesday at 3 PM.
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0 Neutron Wall Loading Distribution”
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ARIES-CS Plasma and Coils

. Toroidal Angle Poloidal Angle
Peak (Min) [MW/m’] (degrees)g (degrees)g

5.26 (0.32) -11 (-4) -18 (-116)

Peak/Ave. NWL =2

*  P. Wilson, B. Kiedrowski, L. EI-Guebaly, T. Tautges, G. Sviatoslavsky, J. Lyon, and X. Wang,
“Three-Dimensional Neutronics Analysis of ARIES-CS Using CAD-based Tools,” ARIES-CS
Oral Session - Tuesday at 8 AM. 10



W Well-Optimized Blanket & Shield
Protect Vital Components

WISCONSIN (5.3 MW/m? Peak I')
I/Replaceable FW/BIkt/BW | Thickness
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W High Performance Components at A_. Help

Achieve Compactness, Minimize Major

TTTTTTTTTTTTT
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Radius, and Enhance Economics

Vacuum Vessel

Ga
35 LiPb & He Manifolds Cm
20 Y S 2
. 28
32 FS-Shield He
2
5 L —Back Wall Tube WC-Shield
' 34
54 || Full Blanket )
| Non-uniform 4
Blanket
| Divertor 25
4 FW ]
20 SOL _ =
_______ Plasma

Full Blanket/Shield and Divertor  Non-uniform, Tapered Blanket/Shield

(61%+15%= 76% of FW area)

(24% of FW area)
12
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Tritium Breeding Requirement
Determined Minimum Major Radius

Normalized Poleidal Angle

1.0
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e
o
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i
P

0.0

-0.4 0.2 0.0 0.2 0.4
Normalized Toroidal Angle

Large machines breed more T as non-uniform blanket
coverage decreases with R.

Designs with R < 7.5 m will not provide T self-sufficiency.
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W Reference Blanket Breeds Sufficient

e Trittium for R = 7.75 m Machine

MMMMMMM

e Overall TBR slightly exceeds 1.1 based on 1-D estimate

e 3-D model includes essential components for TBR:
— Non-uniform and full blanket/shield
— Homogenized: FW/Blanket/BW
Shield Divertor
Manifolds
Divertor.

Non-uniform

e 3-D analysis is underway. Blanket

Uniform
Blanket

Shield

Manifolds
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Neutron Streaming Through Penetrations
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Compromises Shielding Performance

e 7 types of penetrations:
— 198 He tubes for blanket (32 cm ID)
— 24 Divertor He access pipes (30-60 cm ID)
— 30 Divertor pumping ducts (42 x 120 cm each)
— 12 Large pumping ducts (1 x 1.25 m each)
— 3 ECH ducts (24 x 54 cm each).
— 6 main He pipes - HX to/from blanket (72 cm ID each)
— 6 main He pipes - HX to/from divertor (70 cm ID each)

*  Potential solutions:
—  Local shield behind penetrations
—  He tube axis oriented toward lower neutron source
—  Penetration shield surrounding ducts
—  Replaceable shield close to penetrations
— Avoid rewelding VV and manifolds close to penetrations
— Bends included in some penetrations.
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w 3-D Assessment of Streaming Through
WiscBren Divertor He Access Pipe

MMMMMMM

Plasma Shield Attached
to Blanket

ATTILA 3-D Model Sl

Shielding
Block .

| Blanket

e
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= Manifold

\Vacuum
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Inner Tube, Shielding
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Block into a Single |
Assembly il
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o

Ongoing analysis will confirm protection
of surrounding components
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W Key Nuclear Parameters

WISCONSIN
Peak NWL 5.3 MW/m?
Average NWL 2.6 MW/m?
Peak to Average NWL 2
Overall TBR ~ 1.1
FW/blanket Lifetime 3 FPY
Shield/manifold/VV/magnet Lifetime 40 FPY
Overall Energy Multiplication 1.16°
Amin 1.3 m
A 1.8 m

max

* To be confirmed with ongoing 3-D analysis.
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ARIES-CS Major Radius

- Approaches R of Advanced Tokamaks

WISCONSIN
ARIES-ST
8 - Spherical Torus
3.2m
oo / -~ \
7 \ Stellarators
6 \ | |
, \ |
! \
1 ! ARIES-AT \ 2006 2000
| - \ ARIES-CS HSR-G 1987 1982
| Toskglflnakél“h 7.75 m 2000 1996 18m  AsRA-6c UWIOR-M
2 R AR TN FFHR-J  SPPS cerrea,, O 24m
| v \ N, R N \
L] \ ,i I I\ a l M | N | . L '

Average Major Radius (m)

Well optimized radial build along with advanced physics
helps reduce ARIES-CS size
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W ARIES Project Committed to
ey Waste Minimization

MMMMMMM
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UWTOR-M ASRA-6C SPPS ARIES-CS ARIES-CS
24 m 20 m 14 m 8.25m 7.75m
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Stellarator waste volume dropped by factor of 3
over 25 y study period

* Actual volumes (not compacted, no replacements).
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Activation and Environmental Issues
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In-vessel Components Exhibit Structural
G Integrity during LOCA/LOFA Event

MADISON

— First Wall
————— LiPb-1
—— Mid Blanket ————— Vacuum Vessel
; 800 | T T | T |
10 S e e e 740 C Temp Limit
E s ; ; ; ; 3 3 700 |
“e 600 -
;;: $ 500 .
; :
T 2 400 .
3 5
o 2 300 1
o g
(@] 5}
= 200 - T
H \
0““““1 '“"2 3 4”““ 5”“‘“'6”““ 7 100 - N
10 10 10" 10° 10" 10° 10" 10 1m 1h 1d 1mo
Time After Shutdown (s) 0 U » - —— ‘ ,
0.1 1 10 100 1000 10" 10° 10° 10
Time (s)
* Design Base Accident scenario: He LOCA and LiPb LOFA in all modules and water

LOFA in VV.
* Plasma stays on for 3 seconds after onset of LOCA/LOFA.
e Peak temperature remains below 740°C — reusability limit for ferritic steel.

* C. Martin and L. El-Guebaly, “ARIES-CS Loss of Coolant and Loss of Flow Accident Analyses,” ARIES-CS Oral Session - Tuesday at 8§ AM.
21
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ARIES-CS Generates

Vs Only Low-Level Waste
'f !
All ARIES-CS' =
Temporary Components =~ N\ |
Storage (~8,000 m?) T{g R
- 3

( 1,;12(3) 2 - )\v/ (~6,600 m-) Class C Class A Could be
(18%) (82%) LLW LLW Cleared?

mjmm FW/BIKt/BW Wy 1o

~ 8 m below . :
> 8 m below ground surface Shield/Manifolds v no
ground surface | \\/ Vacuum Vessel v no
+ ~
Thick Concrete Class A Magnet:

Slab . Nb,Sn v no

Repository Cu Stabilizer v v

JK2LB Steel v v

Insulator v v

ClaSS C Cryostat v v

Bioshield v v

Repository
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80% of ARIES-CS Active Materials can be

g Cleared in < 100 y after Decommission

MADISON
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................
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All ARIES-CS Components can be Recycled in 1-2 y
- (J$iNg Advanced and Conventional RH Equipment”

WISCONSIN

MADISON
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FS-based components:
>Mn (from Fe) is main contributor to dose.
— Store components for few years to decay before recycling.
— After several life-cycles, advanced RH equipment could handle shield, manifolds, and VV.
SiC-based components:
38.60Co, ¥*Mn, and %Zn contributors originate from impurities.
— Strict impurity control may allow hands-on recycling.

* L. El-Guebaly, “Environmental Benefits and Impacts of the Radwaste Management Approaches: Disposal, Recycling, and Clearance,” Waste Management
Oral Session - Radwaste Management Session, Wednesday at 10 AM. 24
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Conclusions

MMMMMMM

Novel approach developed for ARIES-CS helps reduce radial standoff, major
radius, and overall cost by 25-30%.

Radial build satisfies design requirements in terms of breeding sufficient
tritium and shielding vital components.

First time ever complex stellarator geometry modeled for nuclear assessment
using UW newly developed CAD/MCNP coupling approach.

Activation and environmental assessment indicates:

Structural integrity during LOCA/LOFA events (T_, < 740°C)

In-vessel components can be recycled in few years using advanced RH equipment

max

Majority of waste (80%) can be cleared from regulatory control within 100 y

Substantial reduction in radwaste stream compared to previous stellarator designs.
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