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ARIES Compact Stellarator*

3 Field Periods Configuration#

Average Major Radius  7.75 m
Average Minor Radius 1.7 m
Aspect Ratio 4.5
Fusion Power 2400 MW
Average NWL 2.6 MW/m2

Net Electric Power 1000 MWe

COE ($2004) ~83 mills/kWh

Study aimed at reducing stellarators’ size by:
– Developing  compact configuration with low

aspect ratio and advanced physics &
technology

– Optimizing minimum plasma-coil distance
(Δmin) through rigorous nuclear assessment.

________________
*  F. Najmabadi, “Overview of ARIES-CS Compact Stellarator,”  Plenary Session, Monday @ 3 PM.
#  J. Lyon et al., “Optimization of the ARIES-CS Compact Stellarator Power Plants Parameters,” ARIES-CS Oral Session, Tuesday @ 8 AM.
    L.P. Ku, “Configuration Optimization and Physics Basis of ARIES-CS,” ARIES-CS Oral Session, Wednesday @ 1 PM.
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ARIES-CS Nuclear Areas of Research

VV

Blanket

Shield

Magnet

Manifolds

Radial Build Definition:
– Dimension of all components

 – Optimal composition

High-Performance
Shielding Module at Δmin

Neutron Wall Loading Profile:
– Toroidal & poloidal distribution

 – Peak & average values

Blanket Parameters:
– Dimension
– TBR, enrichment, Mn

 – Nuclear heat load
– Damage to FW
– Service lifetime

Radiation Protection:
– Shield dimension & optimal

composition
– Damage profile at shield,

manifolds, VV, and magnets
– Streaming issues
– Workers and public protection

Activation Issues:
– Activity and decay heat
– Thermal response during

LOCA/LOFA events
– Radwaste classification &

management
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Nuclear Task Involves Active
Interaction with many Disciplines

1-D Nuclear Analysis
(∆min, TBR, Mn, damage, lifetime)

Activation Assessment
(Activity, decay heat, LOCA/LOFA, 

Radwaste classification)

3-D Neutronics
(Overall TBR, Mn)

Radial Build Definition
@ ∆min and elsewhere

(Optimal dimension and composition,
blanket coverage, thermal loads )

NWL Profile
(Γ peak, average, ratio)

Prelim. Physics
(R, a, Pf, ∆min, plasma 
contour, magnet CL)

Design
Requirements

no ∆min match

or insufficient breeding

Init. Divertor
Parameters

Init. Magnet
Parameters

Blanket Concept

Systems Code
(R, a, Pf)

CAD Drawings

Safety Analysis

Blanket Design
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Stellarators Offer Unique Engineering
Features and Challenges

• Minimum radial standoff at Δmin controls machine size and cost.
            ⇒  Well optimized radial build particularly at Δmin

• Sizable components with low shielding performance (such as He manifolds) should be
avoided at Δmin.

• Could design tolerate non-uniform blanket/shield at Δmin?   Impact on TBR, overall
size, and economics?

• Compactness mandates all components should provide shielding function:
– Blanket protects shield
– Blanket and shield protect manifolds and VV
– Blanket, shield, and VV protect magnets.

• Highly complex geometry mandates developing new approach to directly couple CAD
drawings with 3-D MCNP neutronics code.

• Economics and safety constraints control design of all components from beginning.
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Reference Dual-cooled LiPb/FS Blanket
Selected with Advanced LiPb/SiC as Backup*

Breeder Multiplier Structure FW/Blanket Shield VV
Coolant

Coolant Coolant

Internal VV@:
Flibe Be FS Flibe Flibe H2O

LiPb (backup) – SiC LiPb LiPb H2O

LiPb (reference) – FS He/LiPb He H2O

Li4SiO4  Be FS He He H2O

External VV#:
LiPb – FS He/LiPb He or H2O He

 
Li – FS He/Li He He

________________
*  R. Raffray, L. El-Guebaly et al., “Engineering Design and Analysis of the ARIES-CS Power Plant,” ARIES-CS Oral Session, Tuesday @ 8 AM.
@ VV inside magnets.
 #  VV outside magnets.
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ARIES-CS Requirements Guide
In-vessel Component Design

Overall TBR 1.1
   (for T self-sufficiency)

Damage to Structure 200  dpa - advanced FS
   (for structural integrity)

Helium Production @ Manifolds and VV 1 He appm
   (for reweldability of FS)

S/C Magnet (@ 4 K):
    Peak Fast n fluence to Nb3Sn (En > 0.1 MeV) 1019 n/cm2

 Peak Nuclear heating 2 mW/cm3

    Peak dpa to Cu stabilizer 6x10-3 dpa
Peak Dose to electric insulator > 1011 rads

Plant Lifetime 40 FPY

Availability 85%

Operational dose to workers and public < 2.5 mrem/h
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FW Shape Varies Toroidally and Poloidally:
Challenging 3-D Modeling Problem
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UW Developed CAD/MCNP Coupling Approach to
Model ARIES-CS for Nuclear Assessment

• Only viable approach for ARIES-CS
3-D neutronics modeling*.

• Geometry and ray tracing in CAD;
radiation transport physics in
MCNPX.

CAD geometry engine
Monte Carlo

methodRay object
intersection

       CAD based Monte Carlo Method

  CAD geometry file Neutronics
input file

________________________________
* P. Wilson, T. Tautges, M. Sawan, L. El-Guebaly, D. Henderson, G. Sviatoslavsky, B.

Kiedrowski, A. Ibrahim, “Innovations in 3-Dimensional Neutronics Analysis for Fusion
Systems,” Computational Tools and Validation Experiments Session - Tuesday at 3 PM.
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Neutron Wall Loading Distribution*
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* P. Wilson, B. Kiedrowski, L. El-Guebaly, T. Tautges, G. Sviatoslavsky, J. Lyon, and X. Wang,

“Three-Dimensional Neutronics Analysis of ARIES-CS Using CAD-based Tools,” ARIES-CS
Oral Session - Tuesday at 8 AM.
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Well-Optimized Blanket & Shield
Protect Vital Components

(5.3 MW/m2 Peak Γ)
Replaceable FW/Blkt/BW Thickness
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High Performance Components at Δmin Help
Achieve Compactness, Minimize Major

Radius, and Enhance Economics

|
Non-uniform, Tapered Blanket/Shield 

(24% of FW area)
Full Blanket/Shield and Divertor

(61%+15%= 76% of FW area)
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Tritium Breeding Requirement
Determined Minimum Major Radius

• Large machines breed more T as non-uniform blanket
coverage decreases with R.

• Designs with R < 7.5 m will not provide T self-sufficiency.

7 m

8.5 m

R= 7.5 m
8 m

Non-uniform Blanket Contours
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Reference Blanket Breeds Sufficient
Tritium for R = 7.75 m Machine

• Overall TBR slightly exceeds 1.1 based on 1-D estimate

• 3-D model includes essential components for TBR:
– Non-uniform and full blanket/shield
– Homogenized: FW/Blanket/BW

Shield
Manifolds
Divertor.

• 3-D analysis is underway. Non-uniform
Blanket

Uniform
Blanket

Shield

Manifolds

Divertor
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Neutron Streaming Through Penetrations
Compromises Shielding Performance

• 7 types of penetrations:
– 198 He tubes for blanket (32 cm ID)
– 24 Divertor He access pipes (30-60 cm ID)
– 30 Divertor pumping ducts (42 x 120 cm each)
– 12 Large pumping ducts (1 x 1.25 m each)
– 3 ECH ducts (24 x 54 cm each).
– 6 main He pipes - HX to/from blanket  (72 cm ID each)
– 6 main He pipes - HX to/from divertor (70 cm ID each)

• Potential solutions:
– Local shield behind penetrations
– He tube axis oriented toward lower neutron source
– Penetration shield surrounding ducts
– Replaceable shield close to penetrations
– Avoid rewelding VV and manifolds close to penetrations
– Bends included in some penetrations.
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3-D Assessment of Streaming Through
Divertor He Access Pipe

Ongoing analysis will confirm protection
of surrounding components

ATTILA 3-D Model

Neutron Flux 
Distribution
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Key Nuclear Parameters

Peak NWL 5.3 MW/m2

Average NWL 2.6 MW/m2

Peak to Average NWL 2

Overall TBR ~ 1.1*

   
FW/blanket Lifetime 3 FPY

Shield/manifold/VV/magnet Lifetime 40 FPY  

Overall Energy Multiplication 1.16*

Δmin 1.3 m
Δmax 1.8 m

____________
* To be confirmed with ongoing 3-D analysis.
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ARIES-CS Major Radius
Approaches R of Advanced Tokamaks

1982
UWTOR-M

24 m
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2000
HSR-G

18 m1996
SPPS
14 m

2000
FFHR-J
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2006
ARIES-CS

7.75 m

ARIES-ST
Spherical Torus

3.2 m

ARIES-AT
Tokamak

5.2 m

Stellarators
||

Average Major Radius (m)

Well optimized radial build along with advanced physics
helps reduce ARIES-CS size 
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ARIES Project Committed to
Waste Minimization

Stellarator waste volume dropped by factor of 3
over 25 y study period

_____________________
* Actual volumes (not compacted, no replacements).
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Activation and Environmental IssuesActivation and Environmental Issues
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In-vessel Components Exhibit Structural
Integrity during LOCA/LOFA Event*
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• Design Base Accident scenario: He LOCA and LiPb LOFA in all modules and water
LOFA in VV.

• Plasma stays on for 3 seconds after onset of LOCA/LOFA.
• Peak temperature remains below 740oC – reusability limit for ferritic steel.
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* C. Martin and L. El-Guebaly, “ARIES-CS Loss of Coolant and Loss of Flow Accident Analyses,” ARIES-CS Oral Session - Tuesday at 8 AM.
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ARIES-CS Generates
 Only Low-Level Waste

All ARIES-CS
Components
(~8,000 m3)

Class A
Repository

Class C
Repository

~ 8 m below
ground surface> 8 m below

ground surface
+

Thick Concrete
Slab

Temporary
Storage

≈

Class C Class A Could be
LLW LLW Cleared?

FW/Blkt/BW √ no

Shield/Manifolds √ no

Vacuum Vessel √ no

Magnet:
Nb3Sn √ no
Cu Stabilizer √  √
JK2LB Steel √  √
Insulator  √  √

Cryostat  √  √

Bioshield  √  √

(~6,600 m3)
(82%)

(~1,400 m3)
(18%)
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80% of ARIES-CS Active Materials can be
Cleared in < 100 y after Decommission
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All ARIES-CS Components can be Recycled in 1-2 y
Using Advanced and Conventional RH Equipment*
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FS-based components:
– 54Mn (from Fe) is main contributor to dose.
– Store components for few years to decay before recycling.
– After several life-cycles, advanced RH equipment could handle shield, manifolds, and VV.

SiC-based components:
– 58,60Co, 54Mn, and 65Zn contributors originate from impurities.
– Strict impurity control may allow hands-on recycling.

Cryostat
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Shield
Vacuum
Vessel

Magnet

Bioshield

_____________________
* L. El-Guebaly, “Environmental Benefits and Impacts of the Radwaste Management Approaches: Disposal, Recycling, and Clearance,” Waste Management
   Oral Session - Radwaste Management Session, Wednesday at 10 AM.
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Conclusions

• Novel approach developed for ARIES-CS helps reduce radial standoff, major
radius, and overall cost by 25-30%.

• Radial build satisfies design requirements in terms of breeding sufficient
tritium and shielding vital components.

• First time ever complex stellarator geometry modeled for nuclear assessment
using UW newly developed CAD/MCNP coupling approach.

• Activation and environmental assessment indicates:
– Structural integrity during LOCA/LOFA events (Tmax < 740oC)
– In-vessel components can be recycled in few years using advanced RH equipment
– Majority of waste (80%) can be cleared from regulatory control within 100 y
– Substantial reduction in radwaste stream compared to previous stellarator designs.


