

Scoping Assessment of Advanced Tokamak with DCLL Blanket: Design Challenges and Economic Implications

> L. El-Guebaly Fusion Technology Institute UW - Madison

and the ARIES Team: R. Raffray, S. Malang, Z. Dragojlovic, X. Wang, F. Najmabadi (UCSD), C. Kessel (PPPL), L. Waganer (Boeing)

Contributors: S. Sharafat, M. Youssef (UCLA)

Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies, with participation from China

> March 16 - 18, 2009 University of Tokyo Kashiwa, Japan

- **Scoping assessment** of ARIES-AT^{*} with Dual-Coolant LiPb (DCLL) blanket (previously developed for <u>ARIES-ST[@] in 1997</u> and <u>ARIES-CS[#] in 2003</u>)
 - \Rightarrow redefine ARIES-AT radial builds with:
 - DCLL blanket and shield system
 - < 90% Li enrichment
 - LiPb/He Manifolds (tentative composition/dimension/location)
 - No stabilizing shells (will be added later)
 - Low-temperature magnets (replacing high-temperature magnets).
- Impact of SiC inserts on TBR:
 - **Reference**: 100% dense, 0.5 cm thick SiC inserts
 - Alternative: 0.5-0.7 cm thick, less dense SiC inserts (0.3-0.5 cm 10% dense SiC foam sandwiched _ between 1 mm 100% dense impermeable CVD-SiC face sheets; 0.23-0.25 cm equivalent SiC thickness).
- Compare reference ARIES-AT-SiCLL design with proposed ARIES-AT-DCLL design, ۲ highlight impact of DCLL system on overall design, and recommend improvements for final ARIES-AT-DCLL design.

F. Najmabadi, A. Abdou, L. Bromberg, T. Brown, V.C. Chan, M.C. Chu et al., "The ARIES-AT Advanced Tokamak, Advanced Technology Fusion Power Plant," Fusion Engineering and Design 80, 3-23 (2006).

F. Najmabadi, "Spherical Torus Concept as Power Plants-the ARIES-ST Study," Fusion Engineering and Design 65 (2) (2003) 143-164. F. Najmabadi, A.R. Raffray, S. Abdel-Khalik, L. Bromberg. L. Crosatti, L. El-Guebaly et al., "The ARIES-CS Compact Stellarator Fusion Power Plant," # Fusion Science and Technology 54, No. 3 (2008) 655-672.

ARIES-AT Reference Design

Fusion Power	1755 MW
Major Radius	5.2 m
Minor Radius	1.3 m
Peak Γ @ IB, OB, Div	3.1, 4.8, 2 MW/m ²

SiC/SiC Composite Structure LiPb/SiC Blanket Discrete LiPb Manifolds High Temperature S/C Magnet @ 70-80 K No W on FW

Plasma Control:

5 Tungsten Shells on IB and OB

- 2 Vertical Position Coils
- 2 Feedback Coils

ARIES-AT Radial Builds: IB, OB, Div

(SiC Structure; HT Magnets)

ARIES-AT Blanket Options

ARIES-AT Compositions

Inboard:

FW/Blanket

HT Shield

Manifolds VV Outboard: FW/Blanket-I

FW/Blanket-II

HT Shield

Manifolds VV

Top/Bottom: Divertor System

Replaceable HT Shield

Permanent HT Shield

Manifolds VV

ARIES-AT-LiPb/SiC (Reference Design)

81% LiPb, 19%SiC

15%SiC, 10% LiPb, 70% B-FS Filler , **5% W shells**

13% FS, 22% H₂O, 65% WC

80% LiPb, 20%SiC

77% LiPb, 20%SiC, 3% W shells

15%SiC, 10% LiPb, 75% B-FS Filler

30% FS, 70% H₂O

40%SiC, 50% LiPb, 10% W

15%SiC, 10% LiPb, 75% FS Filler

15%SiC, 10% LiPb, 75% B-FS Filler

13% FS, 22% H₂O, 65% WC

<u>ARIES-AT-DCLL</u>* 0.5 cm Ultramet SiC, No Shells

79% LiPb, 12% He/void, 6% FS, 3%SiC inserts 15%FS, 10% He, 75% B-FS Filler 50%FS, 25% He, 24% LiPb, 1%SiC 17% FS, 34% H₂O, 49% WC

> 79% LiPb, 12% He/void, 6% FS, 3%SiC inserts

15%FS, 10% He, 75% B-FS Filler 50%FS, 25% He, 24% LiPb, 1%SiC 30% FS, 50% H₂O, 20% B-FS

33% FS, 4% W, 63% He

15%FS, 10% He, 75% B-FS Filler

15%FS, 10% He, 75% B-FS Filler 50%FS, 25% He, 24% LiPb, 1%SiC 22% FS, 48% H₂O, 30% B-FS

Tentative compositions. Will change as design evolves.

ARIES-AT-DCLL Radiation Limits and Key Parameters

Calculated Overall TBR Net TBR (for T self-sufficiency)	1.1 ~1.01	
Damage to Structure (for structural integrity)	200 ???	dpa - advanced FS W structure
Helium Production @ Manifolds and VV (for reweldability of FS)	1	He appm
LT S/C TF & PF Magnets (@ 4 K): Peak Fast n fluence to $Nb_3Sn (E_n > 0.1 MeV)$ Peak Nuclear heating Peak dpa to Cu stabilizer Peak Dose to GFF Polyimide insulator	10 ¹⁹ 2 6x10 ⁻³ < 10 ¹¹	n/cm ² mW/cm ³ dpa rads
Plant Lifetime	40	FPY
Availability	85%	
Operational Dose to Workers and Public	< 2.5	mrem/h

Radial Build Optimization Criteria

- Adjust blanket dimension to provide overall TBR of 1.1
 - Check impact of less dense SiC inserts on breeding
- Maximize number of permanent components to minimize radwaste stream:
 - Segment OB blanket into replaceable and permanent components
 - Protect external components (shield, manifolds, VV, and magnets) to serve for entire plant lifetime
- All in-vessel components should provide shielding function:
 - Blanket protect shield for plant life (40 FPY)
 - Blanket and shield protect manifolds and VV
 - Blanket, shield, manifolds, and VV protect magnets

Ultramet SiC Inserts

(Ref: S. Sharafat, Development Status of Flow Channel Inserts for the U.S.-ITER DCLL TBM; 18th TOFE, 2008)

Main features and advantages:

- 3-5 mm 10% dense foam ⇒ Low SiC content (to alleviate impact on TBR)
- Fully dense CVD SiC face sheets prevent LiPb ingress into foam
- Construction of long segments (> 75 cm) seems feasible
- Low-cost manufacturability
- Good strength, stiffness, and thermal stress resistance
- Low thermal and electrical conductivity.

Testing is underway.

Results so far are promising.

For any type of SiC inserts:

Change of <u>electrical conductivity</u> with neutron irradiation could be significant (0.4 atom% Mg @ 3 FPY for 6 MW/m² NWL, per Sawan (UW)).

SiC Inserts Degrade Tritium Breeding

ARIES-AT-DCLL TBR

45 cm IB FW/Blanket/Back Wall 80 cm OB FW/Blanket/Back Wall No Shells

ARIES-AT IB Radial Build

ARIES-AT OB Radial Build

ARIES-AT Divertor Radial Build

 $\Delta = 45 \text{ cm}$

Radiation Level

	IB	OB	Div.	Limit
Peak NWL (MW/m ²)	3.4	4.8	2	
Peak atomic displacement @ FW and W of div: dpa / FPY FW dpa @ 2.8 FPY dpa at W of Div @ 2.8 FPY	68 190	73 200	7.4 20	200 ???
dpa at shield (dpa @ 40 FPY): Replaceable Permanent	<mark>640</mark> 160	109	<mark>1080</mark> 160	200
He production at manifolds (He appm @ 40 FPY)	5*	1	0.8	1
He production at VV (He appm @ 40 FPY)	1	0.2	0.1	1
LT Magnet @ 4 K: Fast neutron fluence (10 ¹⁹ n/cm ² @ 40 FPY)	1	0.5	0.7	1
Nuclear heating (mW/cm ³)	0.6	2	1	2

^{*} Rewelding allowed at top/bottom, not around midplane.

Isometric View of Proposed DCLL Blanket

THE UNIVERSITY WISCONSIN MADISON

Kink Shell Behind OB FW ?

- Could Cu or W kink shell be placed behind OB FW?
- Could Cu operate at 700 °C? Is W the only option?
- Integration of kink shell with blanket?
- Impact on breeding?

ARIES-AT-DCLL OB Blanket with kink shell behind FW

IB and/or OB Blanket should be thickened to compensate for losses in breeding

Shells Between OB Blanket Segments ?

- Could OB blanket be segmented into two segments to accommodate shells (al la ARIES-AT)?
- Advantages:
 - Less integration problems
 - Less impact of shells on breeding
 - Lifetime of back blanket segment > 3 FPY (\sim 15 FPY)
 - Notable reduction in lifecycle radwaste volume.
- Need:

Innovative method to support and cool both blanket segments.

ARIES-AT-DCLL OB Blanket with Cu kink and VS shells between OB blanket segments (blanket temp < 700 °C)

Economic Trend

	ARIES-AT-LiPb/SiC (Reference)	ARIES-AT-DCLL	Cost of ARIES-AT-DCLL
IB, OB, Div radial standoff*	135, 160, 133 cm	185, 219, 178 cm	↑
Limit on max. NWL (MW/m ²)	~6	< 5.5	
Major radius	5.2 m	> 5.2 m	ſ
Calculated overall TBR	1.1 w/ 90% ⁶ Li enrichment	1.1 w/o shells w/ 70% ⁶ Li enrichment	
FW/blanket lifetime	$\sim 4 \text{ FPY} \\ \Rightarrow 18 \text{ MWy/m}^2$	$\sim 2.8 \text{ FPY}$ ⇒ 13 MWy/m ²	ſ
Overall energy multiplication	1.1	~1.15	\downarrow
Structure unit cost [#]	~620 \$/kg	~95 \$/kg	\downarrow
η_{th}	$\sim 60\%$	40-45%	↑
Cost of heat transfer/transport system [#]	~\$160M	> \$300M	1
He pumping power		> 100 MW _e	↑
Level of Safety Assurance (LSA) factor	1	2	↑
COE: in 1992 \$ in 2008 \$	48 mills/kWh 70 mills/kWh	> 60 mills/kWh > 90 mills/kWh	ſ

* Excluding gaps.
In 2008 \$.

Observations and Recommendations

Observations:

- DCLL system increases ARIES-AT radial standoff by 50-60 cm
 - \Rightarrow Larger and more costly ARIES-AT-DCLL machine
- Less dense SiC inserts lessen -ve impact on breeding
- Adding stabilizing shells will degrade breeding, requiring thicker IB/OB blankets, if effective.

To enhance ARIES-AT-DCLL design:

- Investigate means to reduce radial build standoffs, machine size, and cost (e.g., relocate manifolds at top/bottom*, lower He pumping power, etc.)
- Thicken IB blanket to protect IB shield for plant life (40 FPY)
- Segment OB blanket to accommodate stabilizing shells, alleviate impact of shells on breeding, and reduce radwaste stream.

^{*} As suggested by El-Guebaly @ Dec-07 ARIES meeting: DCLL Blanket for ARIES-AT: Major Changes to Radial Build and Design Implications.