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W Six Stellarator Power Plants Developed

Wit Worldwide Over Past 25 y
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W Stellarators Offer Unique Features

Wischren and Engineering Challenges
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Advantages:
— Inherently steady-state devices
— No need for large plasma current
— No external current drive
— No risk of plasma disruptions
— Low recirculating power due to absence of current-drive requirements

— No instability and positional control systems.

Challenges:
— Complex geometry
— Maintainability and component replacement
— Highly constrained local shielding areas
— 3-D modeling
— Managing large volume of active materials.
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ARIES Compact Stellarator

Study aimed at reducing stellarators’ size by:

— Developing compact configuration with
advanced physics & technology

— Optimizing minimum plasma-coil distance
(A,;,,) through rigorous nuclear assessment.

3 Field Periods Configuration
Average Major Radius 7.75 m
Average Minor Radius 1.7 m
Aspect Ratio 4.5
Fusion Power 2400 MW
Average NWL 2.6 MW/m?
Net Electric Power 1000 MW,
COE ($2004) 78 mills’/kWh
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W ARIES-CS Nuclear Areas of Research
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Radial Build Definition:
— Dimension of all components
— Optimal composition

Neutron Wall Loading Profile:
— Toroidal & poloidal distribution
— Peak & average values

High-Performance

Shielding Module at A .

Activation Issues:
— Activity and decay heat
— Thermal response during
LOCA/LOFA events
— Radwaste classification &
management

Blanket Parameters:
— Dimension
— TBR, enrichment, M|
— Nuclear heat load
— Damage to FW
— Service lifetime

=l

| Radiation Protection:

— Shield dimension & optimal
composition

— Damage profile at shield,
manifolds, VV, and magnets

— Streaming issues

— Workers and public protection




W Reference Dual-cooled LiPb/FS Blanket

aeres - Selected with Advanced LiPb/S1C as Backup
Breeder Multiplier Structure FW/Blanket Shield VvV
Coolant Coolant Coolant
Internal VV*:
Flibe Be FS Flibe Flibe H,0
LiPb (backup) - SiC LiPb LiPb H,O
LiPb (reference) - FS He/LiPb He H,0
Li,SiO, Be FS He He H,0
External VV#;
LiPb — FS He/LiPb He or H,O He
Li — FS He/Li1 He He

* VV inside magnets.
# VYV outside magnets.



W ARIES-CS Requirements Guide

Wischmen In-vessel Component Design
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Overall TBR 1.1
(for T self-sufficiency)

Damage to Structure 200 dpa - advanced FS

(for structural integrity)

Helium Production @ Manifolds and VV 1 He appm
(for reweldability of FS)

S/C Magnet (@ 4 K):

Peak Fast n fluence to Nb,Sn (E > 0.1 MeV) 101 n/cm?
Peak Nuclear heating 2 mW/cm?
Peak dpa to Cu stabilizer 6x10-3 dpa
Peak Dose to electric insulator < 10'"  rads
Plant Lifetime 40 FPY
Availability 85%
Operational dose to workers and public <2.5 mrem/h
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FW Shape Varies Toroidally and Poloidally:
Challenging 3-D Modeling Problem
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w UW Developed CAD/MCNP Coupling Approach to
sssssssssssss Model ARIES-CS for Nuclear Assessment
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Only viable approach for ARIES-CS
3-D neutronics modeling.

Geometry and ray tracing in CAD;

radiation transport physics in
MCNPX.
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W Neutron Wall Loading Distribution
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W Well-Optimized Blanket & Shield
Protect Vital Components

WISCONSIN (5.3 MW/m? Peak I')
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W High Performance Components at A_. Help

Achieve Compactness, Minimize Major
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Radius, and Enhance Economics

Vacuum Vessel

Ga
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Full Blanket/Shield and Divertor  Non-uniform, Tapered Blanket/Shield

(61%+15%= 76% of FW area)

(24% of FW area)
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W Reference Blanket Provides
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Tritium Self-Sufficiency

3-D model includes essential components for TBR:

— Non-uniform and
— Homogenized:

full blanket/shield
FW/Blanket/BW
Shield
Manifolds
Divertor.

Divertor

Overall TBR =1.1
with 70% Li enrichment

Non-uniform
Blanket

Uniform
Blanket

Shield

Manifolds
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W Key Nuclear Parameters

WISCONSIN
Peak NWL 5.3 MW/m?
Average NWL 2.6 MW/m?
Peak to Average NWL 2
Overall TBR 1.1
FW/blanket Lifetime 3 FPY
Shield/manifold/VV/magnet Lifetime 40 FPY
Overall Energy Multiplication 1.16
A 1.3 m
A 1.8 m

max
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w ARIES-CS Major Radius
v Approaches R of Advanced Tokamaks
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Well optimized radial build along with advanced physics and
technologies helped reduce ARIES-CS size
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W ARIES Project Committed to
WiseBRen Radwaste Minimization
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Stellarator waste volume dropped by factor of 3
over 25 y study period

* Actual volumes (not compacted, no replacements).
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Activation and Environmental Issues
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ARIES-CS Generates

Wischnai Only Low-Level Waste
: X
All ARIES-CS.
Temporary Components =~ N\
Storage (~8,000 m3) N Least Hazardous
’ ; ,Hﬂ/g o Type of Waste
~1,4 3
( 71 é)((; . )\,/ (~6,600 m’) Class C Class A Could be
(18%) (82%) LLW LLW Cleared?
mjm FW/BIkt/BW v 1o
~ 8 m below . :
> 8 m below ground surface Shield/Manifolds v no
ground surface | \\/ Vacuum Vessel v no
+ ~y
Thick Concrete Class A Magnet:
Slab . Nb,Sn v no
Repository Cu Stabilizer v v
JK2LB Steel Y Y
Insulator v v
Class C Cryostat v v
Repository Bioshield v v
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80% of ARIES-CS Active Materials can be

g Cleared in < 100 y after Decommission

MADISON

x 10"° FV o | 2 m Bioshield . Clear
e 0%t ... | | Recycle or
g ' Dispose of
g 10 A S N \ T Blanket
© 10* o R C,tyo,s,t,a,,t ,,,,,,,,,,,,,,, . 3 Shield
(] _—|-l —-l- ——h- -—“.( _ ' H ?
%) S Inter-CmI Structure ‘ Vacuum
.1 0 . Steel of Bld: ; Vessek 16
U). r————ﬁ(——)(- ! )@-)(-9(&
S5 10° Cohcrefe gf BIQg S&
10° 10> 10* 10° 10° 10 Cryostat
]
Time (s) %
1.0 ¥ T ¥
0.9 Hl Not compacted, no replacements

................

B Fully compacted with replacements [}

— Recycle or

E Dispose of
s B/S/VV/M
£ (20%)

Clear
Magnet w/o Nb3Sn,

Cryostat & Bioshield
(80%)

FW/BIKt/  Shid/ Vv Magnets & cryostat
BW Mnfld Structure 21



All ARIES-CS Components can be Recycled in 1-2 y
rrrrr - Jsing Advanced and Conventional RH Equipment

WISCONSIN

MMMMMMM

10 6
| Bioshield . = 10 : : : g g
’ T S 10%f— e dvanced
o 102 Shield 7777777 P N
Blanket { 5 . T~ \
Shield g 10°p - YWoo e~ NN\
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, b " W
Vacuum 8 2 _Irger_Cgl §tr£cture 3 3 i i ‘ nservative
Vessek 16 a 10° — - Bl : e : L
e L S \C!¥ ostat W RH Limit
o)) 4 ———--ﬁ-—-r_-‘\-g . P“-\
é 10 -Cen‘c -of Bldg 4o e \
[T} eStleel OT BIAO-I TN T mew XN
> § ands-on
Cryostat 8 g Limit
(14

T 10° 102 10* 10° 102 10"
Time After Shutdown (s)

22



TH

W Conclusions

EEEEEEEEEEE

MMMMMMM

Novel shielding approach developed for ARIES-CS helps reduce radial
standoff, major radius, and overall cost by 25-30%.

Radial build satisfies design requirements in terms of breeding sufficient
tritium and shielding vital components.

First time ever complex stellarator geometry modeled for nuclear assessment
using UW newly developed CAD/MCNP coupling approach.

Activation and environmental assessment indicates:
— In-vessel components can be recycled in few years using advanced RH equipment
— Majority of waste (80%) can be cleared from regulatory control within 100 y

— Substantial reduction in radwaste stream compared to previous stellarator designs.
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