

Nuclear Challenges and Progress in Designing Stellarator Power Plants

L. El-Guebaly,

P. Wilson, D. Henderson, M. Sawan, G. Sviatoslavsky,T. Tautges, R. Slaybaugh, B. Kiedrowski, A. Ibrahim, and the ARIES Team

> Fusion Technology Institute University of Wisconsin - Madison http://fti.neep.wisc.edu/UWNeutronicsCenterOfExcellence

ICENES – 2007

13th International Conference on Emerging Nuclear Energy Systems

June 3–8, 2007 Istanbul, Turkey

Multi-Institution ARIES Project

ARIES-ST

ARIES-I

ARIES-IV 2

Six Stellarator Power Plants Developed Worldwide Over Past 25 y

Six Stellarator Power Plants Developed Worldwide Over Past 25 y (Cont.)

Stellarators Offer Unique Features and Engineering Challenges

Advantages:

- Inherently steady-state devices
- No need for large plasma current
- No external current drive
- No risk of plasma disruptions
- Low recirculating power due to absence of current-drive requirements
- No instability and positional control systems.

Challenges:

- Complex geometry
- Maintainability and component replacement
- Highly constrained local shielding areas
- 3-D modeling
- Managing large volume of active materials.

ARIES Compact Stellarator

Study aimed at reducing stellarators' size by:

- Developing <u>compact</u> configuration with advanced physics & technology
- Optimizing minimum plasma-coil distance (Δ_{\min}) through rigorous nuclear assessment.

3 Field Periods Configuration

Average Major Radius	7.75 m
Average Minor Radius	1.7 m
Aspect Ratio	4.5
Fusion Power	2400 MW
Average NWL	2.6 MW/m²
Net Electric Power	1000 MW _e
COE (\$2004)	78 mills/kWh

ARIES-CS Nuclear Areas of Research

Reference Dual-cooled LiPb/FS Blanket Selected with Advanced LiPb/SiC as Backup

Breeder	<u>Multiplier</u>	<u>Structure</u>	<u>FW/Blanket</u> <u>Coolant</u>	Shield Coolant	<u>Coolant</u>
Internal VV [*] :					
Flibe	Be	FS	Flibe	Flibe	H ₂ O
LiPb (backup)	-	SiC	LiPb	LiPb	H ₂ O
LiPb (reference)	_	FS	He/LiPb	He	H ₂ O
Li ₄ SiO ₄	Be	FS	He	He	H ₂ O
External VV [#] :					
LiPb	_	FS	He/LiPb	He or H_2O	He
Li	_	FS	He/Li	He	He

* VV inside magnets.

VV outside magnets.

ARIES-CS Requirements Guide In-vessel Component Design

Overall TBR (for T self-sufficiency)	1.1	
Damage to Structure (for structural integrity)	200	dpa - advanced FS
Helium Production @ Manifolds and VV (for reweldability of FS)	1	He appm
S/C Magnet (@ 4 K): Peak Fast n fluence to $Nb_3Sn (E_n > 0.1 MeV)$ Peak Nuclear heating Peak dpa to Cu stabilizer Peak Dose to electric insulator	10 ¹⁹ 2 6x10 ⁻³ < 10 ¹¹	n/cm ² mW/cm ³ dpa rads
Plant Lifetime	40	FPY
Availability	85%	
Operational dose to workers and public	< 2.5	mrem/h

FW Shape Varies Toroidally and Poloidally: Challenging 3-D Modeling Problem

UW Developed CAD/MCNP Coupling Approach to Model ARIES-CS for Nuclear Assessment

- Only viable approach for ARIES-CS
 3-D neutronics modeling.
- Geometry and ray tracing in CAD; radiation transport physics in MCNPX.

Neutron Wall Loading Distribution

NWL

Well-Optimized Blanket & Shield Protect Vital Components (5.3 MW/m² Peak Γ)

High Performance Components at Δ_{min} Help Achieve Compactness, Minimize Major Radius, and Enhance Economics

Reference Blanket Provides Tritium Self-Sufficiency

Divertor

3-D model includes essential components for TBR:

- Non-uniform and full blanket/shield
- Homogenized: FW/Blanket/BW

Shield Manifolds

Manifold: Divertor.

Key Nuclear Parameters

Peak NWL Average NWL Peak to Average NWL	5.3 MW/m ² 2.6 MW/m ² 2
Overall TBR	1.1
FW/blanket Lifetime	3 FPY
Shield/manifold/VV/magnet Lifetime	40 FPY
Overall Energy Multiplication	1.16
$\Delta_{ m min} \ \Delta_{ m max}$	1.3 m 1.8 m

ARIES-CS Major Radius Approaches R of Advanced Tokamaks

Well optimized radial build along with advanced physics and technologies helped reduce ARIES-CS size

ARIES Project Committed to Radwaste Minimization

Stellarator waste volume dropped by factor of 3 over 25 y study period

^{*} Actual volumes (not compacted, no replacements).

Activation and Environmental Issues

ARIES-CS Generates Only Low-Level Waste

80% of ARIES-CS Active Materials can be Cleared in < 100 y after Decommission

21

All ARIES-CS Components can be Recycled in 1-2 y Using Advanced and Conventional RH Equipment

Conclusions

- Novel shielding approach developed for ARIES-CS helps reduce radial standoff, major radius, and overall cost by 25-30%.
- Radial build satisfies design requirements in terms of breeding sufficient tritium and shielding vital components.
- First time ever complex stellarator geometry modeled for nuclear assessment using UW newly developed CAD/MCNP coupling approach.
- Activation and environmental assessment indicates:
 - In-vessel components can be recycled in few years using advanced RH equipment
 - Majority of waste (80%) can be cleared from regulatory control within 100 y
 - Substantial reduction in radwaste stream compared to previous stellarator designs.