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Multi-Institution ARIES Project
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Six Stellarator Power Plants Developed
Worldwide Over Past 25 y
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Six Stellarator Power Plants Developed
Worldwide Over Past 25 y (Cont.)

UWTOR-M

ASRA-6C

SPPS
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Stellarators Offer Unique Features
and Engineering Challenges

Advantages:
– Inherently steady-state devices
– No need for large plasma current
– No external current drive
– No risk of plasma disruptions
– Low recirculating power due to absence of current-drive requirements
– No instability and positional control systems.

Challenges:
– Complex geometry
– Maintainability and component replacement
– Highly constrained local shielding areas
– 3-D modeling
– Managing large volume of active materials.
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ARIES Compact Stellarator

3 Field Periods Configuration
Average Major Radius 7.75 m
Average Minor Radius 1.7 m
Aspect Ratio 4.5
Fusion Power 2400 MW
Average NWL 2.6 MW/m2

Net Electric Power 1000 MWe

COE ($2004) 78 mills/kWh

Study aimed at reducing stellarators’ size by:
– Developing  compact configuration with

advanced physics & technology
– Optimizing minimum plasma-coil distance

(Δmin) through rigorous nuclear assessment.
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ARIES-CS Nuclear Areas of Research

VV

Blanket

Shield

Magnet

Manifolds

Radial Build Definition:
– Dimension of all components

 – Optimal composition

High-Performance
Shielding Module at Δmin

Neutron Wall Loading Profile:
– Toroidal & poloidal distribution

 – Peak & average values

Blanket Parameters:
– Dimension
– TBR, enrichment, Mn

 – Nuclear heat load
– Damage to FW
– Service lifetime

Radiation Protection:
– Shield dimension & optimal

composition
– Damage profile at shield,

manifolds, VV, and magnets
– Streaming issues
– Workers and public protection

Activation Issues:
– Activity and decay heat
– Thermal response during

LOCA/LOFA events
– Radwaste classification &

management
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Reference Dual-cooled LiPb/FS Blanket
Selected with Advanced LiPb/SiC as Backup

Breeder Multiplier Structure FW/Blanket Shield VV
Coolant Coolant Coolant

Internal VV*:
Flibe Be FS Flibe Flibe H2O

LiPb (backup) – SiC LiPb LiPb H2O

LiPb (reference) – FS He/LiPb He H2O

Li4SiO4  Be FS He He H2O

External VV#:
LiPb – FS He/LiPb He or H2O He

 
Li – FS He/Li He He

________________
 *  VV inside magnets.
 #  VV outside magnets.
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ARIES-CS Requirements Guide
In-vessel Component Design

Overall TBR 1.1
   (for T self-sufficiency)

Damage to Structure 200  dpa - advanced FS
   (for structural integrity)

Helium Production @ Manifolds and VV 1 He appm
   (for reweldability of FS)

S/C Magnet (@ 4 K):
    Peak Fast n fluence to Nb3Sn (En > 0.1 MeV) 1019 n/cm2

 Peak Nuclear heating 2 mW/cm3

    Peak dpa to Cu stabilizer 6x10-3 dpa
Peak Dose to electric insulator < 1011 rads

Plant Lifetime 40 FPY

Availability 85%

Operational dose to workers and public < 2.5 mrem/h
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FW Shape Varies Toroidally and Poloidally:
Challenging 3-D Modeling Problem
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UW Developed CAD/MCNP Coupling Approach to
Model ARIES-CS for Nuclear Assessment

• Only viable approach for ARIES-CS
3-D neutronics modeling.

• Geometry and ray tracing in CAD;
radiation transport physics in
MCNPX.

CAD geometry engine
Monte Carlo

methodRay object
intersection

       CAD based Monte Carlo Method

  CAD geometry file Neutronics
input file
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Neutron Wall Loading Distribution
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Well-Optimized Blanket & Shield
Protect Vital Components

(5.3 MW/m2 Peak Γ)
Replaceable FW/Blkt/BW Thickness
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High Performance Components at Δmin Help
Achieve Compactness, Minimize Major

Radius, and Enhance Economics

|
Non-uniform, Tapered Blanket/Shield 

(24% of FW area)
Full Blanket/Shield and Divertor

(61%+15%= 76% of FW area)
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Reference Blanket Provides
Tritium Self-Sufficiency

3-D model includes essential components for TBR:
– Non-uniform and full blanket/shield
– Homogenized: FW/Blanket/BW

Shield
Manifolds
Divertor.

 Overall TBR = 1.1
with 70% Li enrichment

Non-uniform
Blanket

Uniform
Blanket

Shield

Manifolds

Divertor
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Key Nuclear Parameters

Peak NWL 5.3 MW/m2

Average NWL 2.6 MW/m2

Peak to Average NWL 2

Overall TBR 1.1
   

FW/blanket Lifetime 3 FPY

Shield/manifold/VV/magnet Lifetime 40 FPY  

Overall Energy Multiplication 1.16

Δmin 1.3 m
Δmax 1.8 m
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ARIES-CS Major Radius
Approaches R of Advanced Tokamaks

Well optimized radial build along with advanced physics and
technologies helped reduce ARIES-CS size
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ARIES Project Committed to
Radwaste Minimization

Stellarator waste volume dropped by factor of 3
over 25 y study period

_____________________
* Actual volumes (not compacted, no replacements).
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Activation and Environmental IssuesActivation and Environmental Issues
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ARIES-CS Generates
 Only Low-Level Waste

All ARIES-CS
Components
(~8,000 m3)

Class A
Repository

Class C
Repository

~ 8 m below
ground surface> 8 m below

ground surface
+

Thick Concrete
Slab

Temporary
Storage

≈

Class C Class A Could be
LLW LLW Cleared?

FW/Blkt/BW √ no

Shield/Manifolds √ no

Vacuum Vessel √ no

Magnet:
Nb3Sn √ no
Cu Stabilizer √  √
JK2LB Steel √  √
Insulator  √  √

Cryostat  √  √

Bioshield  √  √

(~6,600 m3)
(82%)

(~1,400 m3)
(18%)

Least Hazardous
Type of Waste
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80% of ARIES-CS Active Materials can be
Cleared in < 100 y after Decommission
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All ARIES-CS Components can be Recycled in 1-2 y
Using Advanced and Conventional RH Equipment
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Conclusions

• Novel shielding approach developed for ARIES-CS helps reduce radial
standoff, major radius, and overall cost by 25-30%.

• Radial build satisfies design requirements in terms of breeding sufficient
tritium and shielding vital components.

• First time ever complex stellarator geometry modeled for nuclear assessment
using UW newly developed CAD/MCNP coupling approach.

• Activation and environmental assessment indicates:
– In-vessel components can be recycled in few years using advanced RH equipment
– Majority of waste (80%) can be cleared from regulatory control within 100 y
– Substantial reduction in radwaste stream compared to previous stellarator designs.


