

Final Radial/Vertical Builds for ARIES-ACT-SiC Power Core

L. El-Guebaly

Fusion Technology Institute University of Wisconsin-Madison

http://fti.neep.wisc.edu/UWNeutronicsCenterOfExcellence

Contributors:

A. Jaber (UW), X. Wang, M. Tillack, S. Malang, F. Najmabadi (UCSD), C. Kessel (PPPL), A. Rowcliffe (ORNL)

> ARIES Project Meeting May 31- June 1, 2012 Gaithersburg, MD

Changes for ARIES-ACT Compared to ARIES-AT

- 20 cm thick He cooled Steel Ring (formerly HT shield)
 - LiPb replaced by 20% He, per M. Tillack (resulting in ~5 cm thicker build)
 - SiC replaced by 80% ODS-FS structure.
- Thin He-cooled VV, per F. Najmabadi (5-10 cm with 90% FS and 10% He; T < 550°C)
- Water-cooled LT shield (with WC or B-FS filler) placed outside VV (350 < T < 550°C).
- LT magnet (with thin coil cases) replacing HT magnet (with thick coil cases).
- Other changes:
 - Slight changes to LiPb/SiC blanket composition with 60% enriched LiPb
 - 3Cr-3WV FS for VV and LT shield, per A. Rowcliffe (no 316-SS as it produces HLW).

ARIES-ACT-SiC Radiation Limits

	Calculated Overall TBR Net TBR (for T self-sufficiency)	1.05 ~1.01	
	Damage to Structure (for structural integrity)	3% 200 ???	Burn-up for SiC/SiC composites dpa for advanced FS W structure of divertor
len	Helium Production @ Steel Ring & VV	 1	(not reweldable during operation) He appm if reweldable
	LT S/C Magnets (@ 4 K): Peak fast n fluence to $Nb_3Sn (E_n > 0.1 MeV)$ Peak nuclear heating Peak dpa to Cu stabilizer Peak dose to GFF polyimide insulator	$10^{19} \\ 2 \\ 6x10^{-3} \\ < 10^{11}$	n/cm ² mW/cm ³ dpa rads
	Plant Lifetime	40	FPY
	Availability	85%	
	Operational Dose to Workers and Public	< 2.5	mrem/h

Inboard Radial Build

2006 ARIES-AT Inboard Radial Build (Peak IB Γ = 3.2 MW/m²)

Most compact radial build with thick water-cooled VV

ARIES-ACT-SiC Inboard Radial Build at Midplane (Peak IB $\Gamma = 3.3 \text{ MW/m}^2$)

- 6 cm thicker IB radial build compared to ARIES-AT
- LT shield thickness and composition optimized to protect magnet
- Steel Ring should be replaced every 10 FPY
- None of IB components is reweldable.
- VV, LT shield, and magnet are life-of-plant components
- Effect of neutron streaming through assembly gaps on damage and lifetimes of SR, VV, LT shield, and magnet are being assessed with 3-D analysis.

Neutron Spectrum at Surface of IB LT Shield (3Cr-3VW FS)

Outboard Radial Build

2006 ARIES-AT Outboard Radial Build (Peak OB Γ = 4.8 MW/m²)

ARIES-ACT-SiC Outboard Radial Build at Midplane (Peak OB Γ = 4.7 MW/m²)

- 14 cm thicker OB radial build than ARIES-AT's due to:
 - Replacing LiPb in SR by He (~ 4 cm)
 - Thinner inner coil case for LT magnet (~ 10 cm)
- LT shield thickness and composition optimized to protect magnet
- Steel Ring and VV are not reweldable
- Without gaps, Steel Ring, VV, LT shield, and magnet are life-of-plant components
- Effect of neutron streaming through assembly gaps on damage and lifetimes of SR, VV, LT shield and magnet are being assessed₀ with 3-D analysis.

Vertical Build

ARIES-AT Vertical Build (Peak div $\Gamma = 2 \text{ MW/m}^2$)

ARIES-ACT Vertical Build (Peak div $\Gamma = 2 \text{ MW/m}^2$)

Blanket Composition

Li_{15.7}Pb_{84.3} @ 700 °C; 8.8 g/cm³ density; 60% enriched Li

	Thickness (cm)	Composition (volume %)
IB Blanket	35	18% SiC/SiC Composites 82% LiPb
OB Blanket-I	30	16% SiC/SiC Composites 84% LiPb
OB Blanket-II	45	19.3% SiC/SiC Composites 80.7% LiPb

Neutron Streaming Assessment

(work in progress)

Concerns

Assembly gaps (2 cm wide):

- 2 cm wide radial/poloidal assembly gaps reduce effectiveness of shield
- Damage behind straight gaps could increase by orders of magnitude
- During operation, thermal expansion and neutron-induced swelling will close the gap
- Zigzag all gaps to alleviate streaming problem.

Maintenance ports:

- Shielding Doors needed at entrance of ports to attenuate neutrons
- Otherwise, damage at OB TF magnets will be excessive.

Penetrations for plasma heating/control (4 m² max):

 All penetrations should be surrounded with ~0.5 m thick shield to protect sides of TF magnets and externals.

Divertor pumping ducts (20 cm ID):

- Zigzagging the ducts alleviates streaming problem.

Div Pumping Duct

Maintenance Ports (Cont.)

• We modeled entire device for 3-D streaming analysis.

- <u>1st case considered</u>: **no** Shielding Door to:
 - Map neutron flux everywhere, specially within maintenance ports
 - Calculate nuclear heating in IB and OB legs of TF magnets.

Map of Neutron Flux Horizontal Cross Section at Midplane

Pseudocolor Var: n_group_total 2.745e+015 0.2 Port 6.744e+012 1.657e+010 0.0 4.070e+007 Port -0.2 1.000e+005Max: 2.745e+015 0.0 1.0 X-Axis (x10^3) 1.5 0.5 Min: 0.0000 OB magnet at 11.8 m

No Shielding Doors

Higher flux within maintenance doors results in higher damage at OB TF magnet

TF Magnet Heating

	Inboard	Outboard
Total Nuclear Heating (MW)	1.6 KW	44 KW (too high!)
Cryogenic Heat Load* (MW)	0.5 MW	13 MW

Second largest load is conduction through magnet support, per L. Bromberg (MIT).

- Fast n fluence and peak heating at OB magnet expected to exceed limits.
- Shielding Door should be placed at entrance of maintenance ports to protect OB magnets.

^{*} Using 300 W/W (i.e., 300 W needed to remove 1 W of nuclear heating).

By Dec 2012:

- Thickness and composition of Shielding Door (w/o water) or local shield surrounding port walls to protect sides of OB magnet and externals.
- Peak damage to IB and OB components with straight and zigzagged gaps.
- Scaling of shield with NWL for designs with conservative physics.

By June 2013:

• 3-D activation analysis (first ever for ARIES project) for designs with aggressive physics.

(decay heat, WDR, recycling, and clearance with impact of gaps and penetrations)

• Temperature response during LOCA/LOFA.