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Nuclear Assessments
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Activation assessment identifies parameters after operation:
— Specific activity (Ci/m?)
— Decay heat (MW/m?)
— Transmutation products
— Radwaste management schemes:
e (Clearance - release to commercial market to fabricate as consumer products } Preferred options

i Recycling - Reuse within nuclear industry

* Geological disposal classification:
— Low Level Waste (LLW: Class A or C)
— High Level Waste (HLW). Materials generating HLW should be excluded.

e ARIES requirement: all materials should be recyclable and qualify as LLW.

e Radiation damage assessment determines parameters during operation:

— Atomic displacement (dpa) — life-limiting factor for structural components
— He production (in appm) — reweldability of steel-based VV and manifolds

— H production (in appm).



ARIES Vacuum Vessel

 What is new?
e Neutron-induced swelling vs dpa

e VYV Activation assessment:
— Specific activity (Ci/m?)
— Radwaste management schemes:
e (Clearance - release to commercial market to fabricate as consumer products

i Recycling - Reuse within nuclear industry

* Geological disposal classification:
— Low Level Waste (LLW: Class A or C)
— High Level Waste (HLW). Materials generating HLW should be excluded.

e All ARIES materials should be recyclable and qualify as LLW.




Rationale

THE UNIVERSITY

WISCONSIN

MADISON

* No reweldability data for ferritic steel (FS).

e ITER reweldability limit" for 316-SS:

— 1 He appm for thick plate welding
— 3 He appm for thin plate (or tube) welding.

e Double-walled vacuum vessels with internal ribs:
— ITER: 6 cm plate of 316-SS and 1 appm limit
— ARIES: 2 cm plate of F82H-FS and 1 appm limit

(Note discrepancy between ARIES VYV plate thickness and ITER reweldability limit)

e  Should we adopt 316-SS reweldability limits for F82H-FS?
e Or, could 316-SS be used in ARIES VV?
Issues:

— Neutron-induced swelling
— Activation of 316-SS with 2.5 wt% Mo
— Ferromagnetism

—  Structural properties and performance limits”.
— Others?

* Reference: ITER Nuclear Analysis Report G 73 DDD 2 01-06-06 W 0.1 - Section 2.5.1, page 15.

# R.J.Kurtz and R.E. Stoller, “Performance Limits for Austenitic & RAFM Steels,”
UCLA Meeting, August 12-14, 2008.
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Austenitic Steels (such as 316-SS):

Well-developed technology for nuclear and other advanced technology applications
High long-term activation due to 2.5 wt% Mo (alloying element)

Susceptible to swelling at high dose

High He production

Poor thermal conductivity and low thermal stress parameter

Non ferromagnetic

New alumina forming creep resistant versions offer better high-temperature strength and oxidation
resistance.

Ferritic/Martensitic Steels (such as F82H FS):

Well-developed technology for nuclear and other advanced technology applications
Low long-term activation

Resistance to swelling at high dose

Good thermal conductivity and thermal stress parameter

Ferromagnetic

Heat treatable

ODS versions offer route to better high-temperature strength, improved He management, and
mitigate displacement damage.

* R.J.Kurtz and R.E. Stoller, “Performance Limits for Austenitic & RAFM Steels,”UCLA Meeting, August 12-14, 2008.
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Higher Swelling 1in 316-SS than in FS

WISCONSIN
Fission reactor, low He data
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*

assembly gaps may increase damage level, unless well shielded.

Neutron-induced swelling is not significant at low dpa of ARIES VV
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VV Activation

0
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ARIES-CS geometry and parameters:

— 2.6 MW/m? average NWL

40 FPY VYV lifetime
— 85% availability.

—

A

I
Ly
|
L
&J.
|

200

— = ;
T S ) SRR LA R
L

P
L5
14
».u.
~

L
-
o A
... .
>

A T LB
d-
B s RO oS, N _._.
Wt in g ..}..J.x.o N
U—vnmﬂm g
PRA LB L TN LS
AT RN L W .
-

4

.
L.,
LS ..ll
& P

Pl
TN

A -

i e L

o le |0

- - - ¥ a2
Pt LN A N )
v». S .-._.. AL -

. ALY o £ 1 "

i
k.

uwn

18)S0AT)

Jojensuy 2 Ise)) [10)

Joeqsuons

yoed SUIpuIAy

>2 2.2 194 28

Jojensuy ‘yp, + deo

[9SS9A WNNde A

>2 28

0 PIOJIUBIA qdY'1 % 9H

de

PPRWS

[[BAA YoBg WD §

63

jNuRlg

MA U 8¢

TOS

BUISB[]

40 FPY

3.9 FPY



W Long-term Activity of 316-SS 1s

Wit B higher Relative to F82H-FS
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Both Materials are Not Clearable, but
Recyclable with Advanced RH Equipment
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Waste Disposal Rating
(@ 100 y after shutdown)

25
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316-SS
HLW

F82H-FS
Class A LLW

PTc¢ (from

Mo alloying element)

316-SS generates HLW = do not employ for ARIES VV
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ARIES W-Based Divertor

e Candidate W alloys:

— Status of development
— Concerns: activation and radiation damage.

e Activation of W and W-alloys:
— Specific activity (Ci/m?)
— Radwaste management schemes:
e (Clearance - release to commercial market to fabricate as consumer products
* Recycling - Reuse within nuclear industry

* Geological disposal classification:
— Low Level Waste (LLW: Class A or C)
— High Level Waste (HLW). Materials generating HLW should be excluded.

e All ARIES materials should be recyclable and qualify as LLW
— Transmutation products.

e Radiation damage to W:
— Atomic displacement (dpa)
— He production (in appm)
— H production (in appm).
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O Latest Divertor Design
‘‘‘‘‘‘‘‘‘‘‘‘‘ (X. Wang and S. Malang)
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Combined Plate and Finger

26.66 mm

. Rad. W Armor
Divertor Concept
Tor.
D5=20 mm
Pol. D4=18 mm
D3=16 mm
0.5cm W Armor: 88.4% W
(sacrificial layer) 11.6% void D2=13.6 mm
. W alloy D1=11.6 mm
il 2mm
OoDS
7.7 cm L
Rad. alloy
|
T Tor. Rad.-Tor. Cross-section
7.2 cm Cooling Channel: 4mm
29.6% W alloy structure
2.6% W
11.6% ODS-FS
56.2% He
Brazing materials ?!
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Status of W Alloy Development

(R. Kurtz - 5/4/2010)
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Materials program just started working on W alloys for fusion.

Emphasis will be to:

— Look for novel ways to enhance ductility and fracture toughness of W alloys using modern
computational materials science approaches.

— Perform key experiments on existing advanced alloys to benchmark the state-of-the-art
materials using test procedures designed to yield true measures of mechanical and physical
properties.

Even in un-irradiated state, W ductility and fracture toughness are low.

Radiation-induced changes:

— Bombarding W with neutrons will only degrade these properties (as well as
thermal conductivity).

— He and H transmutation products are expected to degrade bulk properties in
addition to displacement damage from neutrons.

— Other transmutation-induced composition changes are likely to be significant
because transmutation rate in W alloys is high.

— Effects of He and H (as well as other implanted particles from plasma) are known
to significantly alter surface morphology and properties.
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Additional Concerns
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Activation-related issues :

Recyclability of W alloys
Waste disposal rating (WDR). Any high-level waste?
Transmutation rate

W decay heat and divertor temperature during LOCA/LOFA. [In ARIES-CS divertor
with W armor, temperature during LOCA exceeded FS reusability limit (740°C) = divertor must be
replaced after each LOCA event].

Radiation damage level:

Atomic displacement
He production
H production

Survivability of W armor during steady state and off-normal events:

Per G. Kulcinski (UW):

Lifetime could be few days, if bombarded with 10%° He atoms/cm?

UW could simulate ARIES divertor conditions using UW-IEC experiment:

e Two options: HOMER and MITE-E, depending on whether '-"M‘””‘: BN\ WL

particle flux is perpendicular or isotropically incident on surface ﬁ ﬂ": -

e (Can simulate energies from ~0.1 keV to > 150 keV
e (Can heat samples separately to ~1000°C

* Need He spectrum and angular distribution.

%‘
. N2
A A )
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W W-Based Materials and Alloys
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e Pure W (impractical)

W with impurities (99.99/0.01 wt%) for armor (sacrificial layer)
(brittle; cracks during fabrication and/or operation)

e W/W composites

W alloys for structural components:
(— W-Re (74 /26 wt%) )
— W-Ni-Cu 90/6/4 wt%)
— W-Ni-Fe (90/7/3 wt%)
— W-L3203 (99 / 1 wt%) - for EU divertor, per Rieth (Germany/).

\/
Commercial

with impurities
AN

— W-TiC (98.9/ 1.1 wt%) - nano-composited alloy developed by Japan.

N\

Optimized for fusion divertors to improve
ductility and fracture toughness

15
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W W-Ti1C Alloy for Fusion Applications
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Reference: H. Kurishita, S. Matsuo, H. Arakawa, T. Sakamoto, S. Kobayashi, K. Nakai, T. Takida, M. Kato, M. Kawai, N. Yoshida,
“Development of Re-crystallized W—1.1%TiC with Enhanced Room-Temperature Ductility and Radiation Performance,” Journal
of Nuclear Materials, Volume 398, Issues 1-3, March 2010, Pages 87-92.

Composition: TiC (1.1 wt%), Mo (~ 3 wt%), O (200 wppm), N (40 wppm).
Mo is from TZM vessel used for mechanical alloying = ignore Mo
Consider nominal W impurities with W_TiC alloy, per H. Kurishita.

Improved radiation performance. Section 3.4 of Kurishita’s paper:

Very recently, blister formation and D retention in W have been investigated for low energy ( 55 + 15 V), high flux (10?2 m2 s!), high fluence (4.5 x 102
m2) ion bombardment at moderate temperature ( 573 K) in pure D and mixed species D + 20%He plasmas in the linear divertor plasma simulator PISCES-A
at the University of California, San Diego [13]. The W materials used are stress-relieved pure W (SR-W), re-crystallized pure W (RC-W) and the
compression formed samples of W— 1.1TiC/Ar-UH and W-1.1TiC/H2-UH. It has been found that W—1.1TiC/Ar-UH and W-1.1TiC/H2-UH exhibit superior
performance to SR-W and RC-W; no holes and no blisters are formed, and consequently D retention is much less than those in SR-W and RC-W of 10%! m?2
by around two orders of magnitude [13]. The observed superior properties of W—1.1TiC/ Ar-UH and W-1.1TiC/H2-UH can be attributed not only to their
much finer grain size than that of SR-W and RC-W [13], but also to the modified microstructure where the grain boundaries are significantly strengthened in
the re-crystallized state. In addition, it is important to state the finding that addition of He to pure D (mixture of D and He) significantly suppresses blistering
and D retention in the W materials [13]. This is most likely because the formation of nano-sized high density He bubbles in the near surface act as a diffusion
barrier to implanted D atoms and consequently reduces the amount of uptake in the W material [13].

[13] M. Miyamoto, D. Nishijima, Y. Ueda, R.P. Doerner, H. Kurishita, M.J. Baldwin, S. Morito, K. Ono, J. Hanna: Nucl. Fusion 49 (2009) 065035.

* Modified W-TiC compacts exhibited superior surface resistance to low-energy D irradiation.

* Because of microstructural modifications, W—1.1%TiC compacts exhibited very high fracture
strength and appreciable ductility at room temperature.

e Per R. Kurtz, US materials program hopes to obtain some of Kurishita’s material for testing.
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List of W Impurities (0.0 1wt%)

WiSCONSIN (M. Rieth - Germany)
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Chemical specification of solid metallic tungsten

Element Garantierte Analyse max. [ugig] Typische Analyse [pa/gl
Element | Guaranteed analysis max. [ug/g] Typical analysis [ug/g]
Ag 10 =5
Al 15 5
As 5 <2
Ba 5 =2
Ca 5 =2
Cd 5 =2
Co 10 <2
Cr 20 <5
Cu 10 <5
Fa ao 10
K 10 5
Mg 5 * 3]
Mni 5 <2
. . .

Undesirable impurity jo == = B
. . — Nb 10 =5
for geological disposal Ni 5 <2
Pb 5 =2
Ta 20 <10
Ti 5 =2
Zn 5 =32
Zr 5 =2
Mo 100 20

w min. 99.97 % *) 99.99% *)

*} metalische Reinhel alne Mo | matalic purity excuding Mo

cC 30 10
H 5 2
N 5 =2
o 20 5
P 20 <10
5 5 =2
s 20 5

17
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1 MW/m? average NWL over divertor plates

Divertor replaced with blanket on same time scale
= ~ 4y of operation (3.4 FPY with 85% availability)

1 MW/m? NWL and 3.4 FPY = 3.4 MWy/m? fluence

Other fluences examined (up to 20 MWy/m?).
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W Source Terms for Nuclear Analysis:
wisen  Neutron Flux and Specitic Activity
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Specific Activity of W Alloys

Neutron Spectrum in Cooling Channel

at Divertor Surface
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W Divertor 1s Not Clearable
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* Even highly pure W cannot be cleared after 100 y following shutdown.
* Divertor should preferably be recycled or disposed of.
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W Candidate W Alloys are Recyclable with
TTTTTTTTTTTTT Advanced Remote Handling Equipment
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 All W alloys can be recycled after few days with advanced RH equipment.
e W-TiC and W-La,0; alloys exhibit lowest recycling dose.
* All W-based components require active cooling during recycling t remove decay heat.
[

Conventional RH equipment cannot be used during plant life (~50 y).
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Candidate W Alloys are Recyclable with

Advanced RH Equipment (Cont.)

WISCONSIN

Recycling Dose Rate of Divertor with W-TiC Alloy (Sv/h)

MADISON
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W alloys could be recycled” several times during plant life, using advanced RH equipment.
Multiple cycles require longer storage period (up to 4 months) before recycling.

3 y between cycles considered for storage, refabrication, and inspection.
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W Classification of W-Based Divertor

sz for Geological Disposal
WDR* Classification
Pure W 0.08 Class C LLW
(99% from !86mRe)
Armor 2 W + impurities 0.95 Class C LLW
L (50% from **Nb)
(| W-La,0, 0.95 Class C LLW
(50% from **Nb)
W-Ni-Cu 0.93 Class C LLW
(46% from **Nb)
Str ral
tructura < W-Ni-Fe 0.93 Class C LLW
Components (46% from %Nb)
W-TiC 0.9 Class C LLW
(54% from **Nb)
\ W-Re 3.2 HLW

(74% from !86mRe)

* Divertor averaged WDR evaluated at 100 y using Fetter’s limits.
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Classification of W-Based Divertor

For 3.4 MWy/m? fluence, all W alloys,
except W-Re, qualify as LLW.

Avoid using W-Re alloy in ARIES
divertor as it generates HLW.
Controlling Nb impurity and Mo helps
increase WDR margin.

sz for Geological Disposal (Cont.)
20l 34MWym® i |
. 5wppm Nb in all W alloys | _
TR . =)
a [ || [Huw -y
z 20f SN - 8 HLW ]
5 I | | | | | =
£ i 1 1 1 1 3 3 ] = B
Sasp = £
fa L | | 3 | | O 6
S Y] z | "9,
1.0 f f f f f f I
I ] 4 s
S i | cidssc [ =
o5t aw . e
SRR T e %
oote= L L L B P Y ol o LLw
Pure W W-La O W-Ni-Fe W-Re ° 5 10 15 20 25
w s _ Fluence {MWy/m?)
w/ Imp. W-Ni-Cu W-TiC
. e W-Re generates HLW at fluences > 1 MWy/m?.

“W alloys with 5 wppm Nb” generate HLW if
fluence exceeds 3.6 MWy/m?.

Operating at higher fluences (>4 MWy/m?)
mandates:

— Controlling Nb to 1 wppm or less

— Removing Mo from W-TiC alloy.
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Transmutation of W
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Unlike Fe, W transmutes at higher rate.
W transmutes into Re, Ta, Os, and other radioisotopes, producing He and H gases.

In W-Re alloy, Re transmutes into Ta, Os, W, and other radioisotopes, producing He
and H gases.

Per R. Kurtz:

— Transmutation of Re into Os is expected to adversely affect properties of W-Re alloy.

— W-26Re alloy may Qot be suitable in fusion neutron environment due to formation of
intermetallic phases’.

— Lower concentrations of Re (0.1 - 5 wt%) may be acceptable.

Both Re and Os increase electric resistivity of W stabilizing shells.

Transmutation level depends on neutron spectrum and fluence
= W armors on divertor and FW and W of stabilizing shells
transmute differently.

* White paper for Fusion Materials Program by A. Rowcliffe, “Tungsten-Based Materials for Divertor Applications,” (2009).
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Transmutation of W 1n

wiesen  Divertor Armor and Cooling Channel
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W Armor Cooling Channel
25,... 25 ,,g,,

. PureW © WReAlloy .
200 0 2

50 50 R,

ol

Atom % Transmuted
Atom % Transmuted

e A N B
0 4 5 10 15
Fluence (MWy/mz)

10 A5 200 25
Fluence (MWy/mz)

e 1-2% transmutation of W at ARIES irradiation conditions
(3.4 MWy/m? for single-use divertor).

* Re transmutes at faster rate than W.

e Excessive Re transmutation (21%) at 20 MWy/m? fluence.
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W Example of Transmutation Products

Atomic Density

WISCONSIN
W Armor of ARIES Divertor
(Pure W)
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L - ] e & | e--sllIlIlIp T — ----4Ta-180m
g | D = e i e At
§100 . — iy T - =) § Y . Py .
£ 7 o S [ ¢ - T HfITe
gm e = 2‘“ 2_—, / ~====+Re-186m
© g0l / P R . Re-187 2 e g g | .~ 10s-187
=~ - -—" . < = 100 a7 —=-=3Ta-182
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W Will F

W Spectrum Make a Difference
to Armor Transmutation?
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W Softer Spectrum Results 1n
Wist o Higher Transmutation of W
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e 14 MeV neutrons produce 50-75% of W transmutations, depending on spectrum.

e Solid breeder blanket with beryllium results in highest transmutation.

Transmutation data for non-LiPb designs do not apply to ARIES
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W Radiation Damage to W Armor

Damage/FPY @ 1 MW/m? dpa He" H*
(dpa/FPY) (appm/FPY) (appm/FPY)
Divertor 3 1.9 7.1
LiPb/FS Blanket 3.9 2.2 8.1
Li,SiO,/Be/FS Blanket 3.1 2.16 8

For same fluence, materials behind W armor change damage to W by only 10-30 %

Realistic Designs
Peak Damage @ 3.4 FPY

Divertor @ 2 MW/m? 20 13 49
OB LiPb/FS Blanket @ 4 M'W/m? 53 30 110
OB Li,SiO,/Be/FS Blanket @ 4 MW/m? 42 29 109

* 1-D He/H results increased by 20% to account for additional He/H production from multiple reactions and radioactive decays.
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Radiation Damage to W 1s Low
Wity Compared to Ferritic Steel
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0.5cm W Armor
LiPb/FS Blanket

4 MW/m’
3.4 FPY

FS

-
o

[
]

<200 dpa limit
FS |

Peak Radiation Damage
(dpa, He appm, or H appm)
=

10’

FS

dpa He
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What is the life-limiting
factor for W alloys?




Brazing Materials May Impact

Wischre Activation Results
e Brazing materials (or joining methods) are necessary to join:
- WtoW
— W o FS.

* So far, no brazing materials considered in our activation analysis
— Need info from US materials program.

e Per M. Rieth (Germany):

— Thickness of brazing materials ~ 50 microns
— For W/W joints:
e 3 brazing alloys under investigation in Europe just for preliminary studies:
— Pd-Ni (60/40 wt%)
— Cu-Ni (56/44 wt%)
— Tior Ti-Fe
e Ni is undesirable for fusion power plants due to high He generation
e Cu is undesirable for fusion power plants due to swelling and embrittlement
— For W/ES joints:
e Cu/Pd (82/18 wt%)
e Cu is undesirable for fusion power plants due to swelling and embrittlement.
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¢ Vacuum vessel:

Avoid using 316-SS as it generates HLW.
Continue using F82H FS for ARIES VV.

Should we:
* Apply ITER reweldability limit (3 He appm for thin 316-SS plate) to ARIES 2-cm F82H-FS plates?
e Ask materials community for guidance?

e ARIES divertor:

Avoid using W-26Re alloy as it generates HLW. And transmutation of Re into Os is expected to
adversely affect properties of W-26Re alloy

W-TiC and W-La,O, are both recyclable with advanced RH equipment
Removing Mo and controlling Nb impurity allow higher fluences while qualifying as LLW

For ARIES operating conditions, transmutation products in W is less than 10% even @ high fluence of
20 MWy/m?
Need guidance from materials community on:

* Preferred W alloy: W-1.1TiC or W-La,0,

e Brazing material

e Radiation limit for W structure. 20 dpa/FPY ?

e  Future work:

Impact of brazing materials on divertor activation.
Decay heat of W and temperature response of divertor during LOCA/LOFA
W stabilizing shells:
e Activation and radwaste classification @ end of life (3-40 FPY)
e Transmutation products:
— Impact of Re and Os on W electrical resistivety.
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