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INTRODUCTION
Dry chamber walls in inertial fusion energy (IFE) 

plants will experience rapid heating as x-rays and 
ions are deposited in the near-surface. These have the 
potential for producing damaging stress waves in the 
solid. The presented work develops a series of results 
for thermoelastic waves produced by rapid, 
volumetric heating in a half space. The calculations 
are carried out without including conduction. The 
exclusion of conduction will increase the 
thermoelastic loads, so that the results represent an 
upper bound for the stresses. Solutions for different 
cases of heating and how they compare to surface 
heating will be shown.
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MODELING
The derivation of the model is shown on a 

particular case. In this case, the heat decreases 
exponentially with depth and remains constant with 
time after it is turned on instantaneously (case 1).
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Considering thermoelastic deformation, with x 
denoting perpendicular from the surface, the 
temperature equation becomes:
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The governing equation for the displacements in the 
solid becomes:
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The wave speed is defined as:

Boundary conditions:

Variables:
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Laplace-transform of the governing equation:
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Displacement-stress relations:
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Longitudinal Stress:
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Stresses at the wave tip (x-rays):

In a different case the heat is ramped over time, but 
still decreases exponentially with depth (case 2):

Depositing the same amount of heat as in the 
previous case (case 1) yields,
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Longitudinal and transverse stresses at fixed times: 
(x-rays):

Displacement at fixed times (x-rays):

Longitudinal stress fields at different locations (Ions):
COMPARISON

The plots show that the stress caused by a step 
increase in the volumetric heating is slightly higher 
than for a ramp increase, assuming the same total 
heat is deposited over a pulse. In addition, the 
stresses increase faster for the case of a step increase.

By comparing the stresses at the end of the pulse, 
one can determine the exact ratio between the 
stresses in case 1 and case 2. Stepped heating always 
causes slightly higher stresses than an equivalent 
ramped case. In the IFE x-ray case, with a 0.5ns 
pulse length, the ratio is 1.07.
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Stresses from case 1 and 2 at fixed times (x-rays):

Comparing the results for volumetric heating with 
previous results for surface heating (based on the 
schematic for case 1), assuming the same total heat 
is deposited, reveals a ratio of 2 for long times.
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Stresses at the wave tip versus time (x-ray):

CONCLUSIONS

Solutions are developed for thermoelastic stress 
waves due to volumetric heating. It is found that the 
stresses induced by volumetric heating are lower 
than for a case in which the same amount of heat is 
supplied as surface heat. It is also shown that step 
heating causes a larger stress than equivalent 
ramped heating, though the difference is relatively 
small.
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