Comparing the Exposure Experiments

Jake Blanchard October 2005

Introduction

- HAPL has three major exposure experiments
 - RHEPP ions
 - XAPPER soft x-rays
 - Dragonfire laser
- ...and two additional ion experiments
 - UNC beamline
 - UW IEC

Hypothesis

- Damage in HAPL chamber walls will be thermomechanical in nature
- Since surface is totally constrained, stress and strain depend only on temperature rise, all 3 experiments should lead to similar damage for similar temperature rise
- If this is proven, then these results will allow us to predict behavior under IFE conditions

Experimental Approach

- Baseline case:
 - Start at 600 C
 - Select input power such that peak temperature is 2400 C
- Run other cases, varying start temperature and rise
- Compare surface effects
- Then assess potential differences

FACILITY	Initial temp °C	Peak temp °C	∆T °C	Shots	Description	
RHEPP	20	1400	1380	2000	No change in surface roughness for 2000 shots = 0.02 μ m RMS	
	20	1690 (2280 peak)	1670	2000	Roughness increases to 2 μ m RMS in 450 shots, constant after	
	520	2280 (2830 peak)	1760	2000	Roughness increases to 2 μm RMS in 450 shots, constant after	
	20	3100	3080	2000	Roughness increases to 4 μm RMS in 400 pulses, constant after	
	600	3575	2975	1000	Roughness increases to 4 μm RMS in 400 pulses, constant after	
DRAGONFIRE	100	1800	1700		In all cases see surface roughening. RMS has not been quantified yet.	
	600	2300	1700			
	100	2500	2400	10 ⁵		
	100	2000	1900		Any given degree of roughening occurs faster with higher ΔT ,	
	100	1500	1400		independent of initial temp	
XAPPER	600	1800	1200	50,000	No roughening	
	600	2500	1900	50,000	Roughening	

Indications

- RHEPP data is consistent with theory of thermomechanical damage
- So are Dragonfire and XAPPER data (qualitatively)
- RHEPP data indicate 1400 C is clearly OK; saturation seen in other runs may allow peak temperatures well over 2000 C

Possible Explanations for Differences

Real Effect

- Time-at-temperature differences (recrystallization, defect diffusion, etc.)
- Ion damage (enhanced diffusion, property changes)
- Elastic waves (more severe for shorter pulses)
- Strain gradients are different (affected volumes differ)
- Experimental
 - Inconsistent characterization
 - Inconsistent vacuum
 - Contamination
 - Overheating

Parameters

Experiment	Туре	Pulse width (ns)	Energy (keV)	Spot Size (mm)	Rep Rate (Hz)
RHEPP	lons	~100	500- 850	10x60	<0.1
XAPPER	X-Rays	~40	<1	0.5 dia.	10
Dragonfire	Laser	~8	1 micron YAG	7 dia.	10

Peak Temp with IFE

HAPL conditions are 350 MJ yield, 10.5 m chamber, no gas

Time at Temperature (single cycle)

Temperatire Profiles (at time of peak temperature)

Data Needs

- Mass loss measurements
- Quantitative roughening measurements from Dragonfire
- Temperature measurements from XAPPER and RHEPP
- Longer pulses
- Shorter pulses
- More pulses

Modeling Needs

- Waves induced by volumetric heating
- Inelastic waves
- Understanding of time at temperature issues
- Other

Waves

- Rapid heating launches waves in walls
- Ablation is needed for shock waves
- For surface heating without ablation, stress from wave is always smaller than surface stress from quasi-static model
- For ion heating in HAPL, stress at wavefront is just a few MPa
- For x-rays, wavefront stress is comparable to yield stress

Time at Temperature

- UCLA: "roughening is competition between stress and surface diffusion"
- Both processes are enhanced by time at temperature

Longer Term Issues

- Neutron damage property changes
- Ion issues IEC results, property changes, blistering, embrittlement, compound formation

Conclusions

- Thermomechanical hypothesis is still in question
- 2400 C peak temperature limit (with 600 C initial temperature) may be OK

Elastic Waves Due to Surface Heating

$$\xi = \frac{x}{a} \qquad \phi = \frac{kT}{qa}$$
$$\tau_w = \frac{\kappa t}{a^2} \quad \hat{\sigma}_x = \frac{(1-2\nu)}{2(1+\nu)} \frac{k\sigma_x}{\alpha qa\mu}$$
$$a = \frac{\kappa}{c} \quad c^2 = \frac{2(1-\nu)\mu}{(1-2\nu)\rho}$$