Comparison of Proposed First Wall Experiments

Jake Blanchard HAPL MWG Fusion Technology Institute University of Wisconsin

Albuquerque – April 2003

Goal

• Assess the ability of various proposed experiments to mimic HAPL conditions

Comparing Experiments

- Which available experiments can be used to test materials for HAPL?
 - XAPPER
 - -Z
 - RHEPP
 - UCSD Laser
 - Infrared
- Match surface peak temperature and then compare spatial distributions

Parameters

Experiment	Туре	Energy (keV)	Max Fluence (J/cm ²)	Approx. Depth (microns)	Pulse Width (ns)
RHEPP	Ions	750	7	1-10	100
Z	X-Rays	0.8-1.2	3000	1-2	6
XAPPER	X-Rays	0.1-0.4	7	1-2	10-30
UCSD	Laser		0.7	0	8
Electra	electrons	500	2	100	100
Infrared	Infrared		q=10 MW/m ²	0	>10 ms

Initial Approach

- Consider three cases using analytical results
 Surface heating
 - Volumetric heating which decays exponentially
 - Uniform volumetric heating over a fixed depth
 - Initial results are for semi-infinite solids, so the results are only valid for short pulses

Constant Fluence

surface
$$T_s = \frac{2F}{k} \sqrt{\frac{\kappa}{\pi t_p}}$$

$$T_{s} = \frac{2F\sqrt{\kappa}}{k\sqrt{\pi t_{p}}} - \frac{F}{\beta kt_{p}} \left[1 - \exp(\beta^{2} \kappa t_{p}) \operatorname{erfc}(\beta \sqrt{\kappa t_{p}})\right]$$

uniform

$$T_{s} = \frac{F\kappa}{lk} \left\{ 1 - 4 i^{2} \operatorname{erfc}\left(\frac{l}{2\sqrt{\kappa t}}\right) \right\}$$

Surface Temperature vs. Pulse Width for Fixed Fluence

Scaling of Temperatures Fix Surface Temperature at 80 ns Pulse Width

RHEPP

 2.2 J/cm^2 , 100 ns for 1 micron depth

5.25 J/cm², 100 ns for 4 micron depth

Infrared Tests

- Time scales are long for infrared tests, so analytical models are not appropriate
- Cases were re-rerun for 50 microns of tungsten on 3 mm of ferritic steel
- Metric is now surface temperature, temperature distribution, and stresses in steel

Temperature Distributions in Steel after last pulse – 150 MJ target

HAPL Low Yield 6.5 meter, no gas IR Experiment – 0.7 MW/m² 80 ms on, 160 ms off

Stress Distributions after last pulse for 150 MJ Target

HAPL Low Yield 6.5 meter, no gas IR Experiment – 0.7 MW/m² 80 ms on, 160 ms off

Ideal Experiment

- Preserve peak power and pulse width
- Preserve time-averaged power
- Preserve initial temperature
- Preserve gradients through steel (cool back of sample)

Conclusions

- Peak temperatures do not scale directly with inverse square root of pulse width
- RHEPP, Z, UCSD laser, and Xapper can simulate peak temperatures in HAPL walls, but with shorter times to peak and with sharper temperature distributions (Electra cannot)
- These effects are likely relatively unimportant
- IR can easily duplicate the important stress distributions throughout a duplex sample (this requires active cooling)
- It isn't clear that other options can mimic stress distributions in duplex samples (Electra might)

Future Work

- Monitor and model experiments
- Create design criteria from modeling
- Model cracking of tungsten (growth through tungsten and at steel interface)
- Model high cycle fatigue in steel
- Model castellation
- Put yield model into BUCKY

