A computational parameter study for the 3D shock-bubble interaction, with and without modeled soap film

John Niederhaus, Jason Oakley, Devesh Ranjan, Mark Anderson, Riccardo Bonazza University of Wisconsin-Madison

bonazza@engr.wisc.edu

Jeffrey Greenough Lawrence Livermore National Laboratory

greenough10llnl.gov

July 19, 2006

10th International Workshop on the Physics of Compressible Turbulent Mixing

Paris, France

This work is supported by DOE Grant #DE-FG52-03NA00061

Previous experimental studies:

- Shock strengths: $1.05 \le M \le 4$
- Density contrast: -0.75 \leq At \leq 0.5
- Bubble gases: He, Kr, Ar, R22
- Film material

Previous numerical studies:

- Euler equations
- 2D resolution: *R*₃₀ *R*₉₀₀
- 3D resolution: R_{90}
- Methods: FCT, TVD, Godunov, WENO
- Adaptive gridding

Previous 2D numerical parameter studies:

- Astrophysical regime, R_{120}
- Shock tube regime, R_{50}

Current study:

- Shock strengths: $1.13 \le M \le 5$
- Density contrast: $-0.75 \le At \le 0.61$
- 3D resolution: R₁₂₈

- Haas and Sturtevant, *JFM*, 1987
 Layes, et al., *PRL*, 2003
 Ranjan et al., *PRL*, 2005
 Quirk and Karni, *JFM*, 1994
- Klein, et al., *Ap.J.*, 1994
 Zabusky and Zeng, *JFM*, 1998
 Marquina and Mulet, *JCP*, 2003

To simulate this problem in 3D, we have used the AMR code, *Raptor* (LLNL):

- 3D compressible Euler equations are solved, with a gamma-law EOS.
- Operator-split, piecewise-linear, second-order Godunov method (Collela, 1985).
 - Cell-centered initial data are traced along characteristics to cell-edges, using monotonized slopes (4th order minmod limiting), to obtain L,R cell edge values.
 - Resulting L,R states at cell interfaces are input to an approximate Riemann solver.
 - Resulting Godunov state is used to compute fluxes.
 - Solution is update by an explicit conservative update.
- Integrator is embedded in the block-structured adaptive mesh refinement (AMR) framework of Berger and Oliger (1984) and Rendleman et al. (1998)
 - Nested hierarchy of increasing resolution rectangular sub-grids
 - Refinement in space and time
 - Fully parallelized
- Extended to 2D, 3D by the operator splitting technique of Strang (1964)
- Extended to multiple materials where the interface is captured following the VOF method of Miller and Puckett (1996)

Grid:

- 3D Cartesian mesh
- 2 levels of refinement, 4× each
- 1/4 symmetry
- Finest level resolution: R₁₂₈
- ~10⁷ cells total

Boundary conditions:

- Outflow on outer lateral surfaces (exclude wall reflections)
- Symmetry on inner lateral surfaces

Refinement criterion:

- Density gradients
- All bubble fluid ($f_1 > 0$)

Initial condition:

- Planar shock of specified strength moving along yaxis, incident on quiescent spherical bubble.
- Ambient and bubble gas properties specified at standard atmospheric conditions.
- Bubble surface smoothed using a sub-grid VOF technique.

Scenario number	Gas pair	М	At	η_0	η_{post}	Previous work
1	Air-helium	1.20	-0.757	0.138	0.119	Experimental
2		1.50			0.102	(Layes, et al)
3		1.68			0.095	
4	N ₂ -argon	1.33	0.176	1.426	1.379	Experimental
5		2.88			1.152	(Ranjan, et al)
6		3.38			1.109	
7	Air-krypton	1.20	0.486	2.892	2.949	Experimental
8		1.50			2.933	(Layes, et al)
9		1.68			2.885	
10	Air-R12	1.14	0.613	4.173	4.731	Numerical
11		2.50			8.181	(Zabusky and Zeng)
12		5.00			9.786	

Diagnostics:

- Velocity of bubble and primary vortex ring
- Bubble dimensions
- Bubble volumetric compression
 - Extent of bubble-ambient mixing
- Circulation

Integral diagnostics: bulk compression

Compression:

Integral diagnostics: mixing

Mixing:
$$q_{mix} = \frac{1}{V(t)} \iiint_D F_{10}^{90} (f_1(x, y, z)) f_1(x, y, z) dV \rightarrow \text{Ratio of mixed volume at time } t \text{ to total volume at time } t$$

A cell is considered "mixed" if $0.1 \le f_1 \le 0.9$

Circulation:
$$\Gamma = \oint_{P} \vec{u} \cdot d\vec{s} = \iint_{S} \vec{\omega} \cdot d\vec{A} \rightarrow \text{Area integrated vorticity at time } t.$$

Circulation measured from simulations: positive, negative, and net, averaged over 48 θ -slices ($\overline{\Gamma}$), with RMS fluctuations ($\widetilde{\Gamma}$).

Comparison to models:

 $\hat{\Gamma}_{p} \equiv$ primary circulation at shock passage "Shock passage": $\widetilde{t \cdot W/R_{0}} = 2$

Picone-Boris (PB), Yang-Kubota-Zukoski (YKZ):

- Based on integrated baroclinic torque
- Bubble shape, density ratio, shock front assumed constant

Samtaney-Zabusky (SZ):

- Asymptotically-motivated approach
- Based on general scaling laws obtained from shock-polar analysis
- "Heavy" bubbles (At > 0) only

Mass-conserving, subgrid model for film material:

- Add 3rd fluid to simulation, in spherical concentric cladding region on bubble surface:
 - "Film" molecular mass: 18.016
 - "Film" gamma: 1.327
- Make "film" region as thin as possible:

$$\tau_{film,model} \equiv \Delta$$

> Apply fixed scaled density to all "film" material:

$$\mathcal{O}_3 = \frac{m_{\mu}}{V_{\Delta}} = \rho_{\text{liq}} \frac{V_{\mu}}{V_{\Delta}}$$

Subdivide cell for sampling

1

- Query subcell center locations relative to inner and outer radii of "film" region
- Tally subcells in/out of film region
- Compute "film" VF and total density for the cell

- Provide rough estimate of the effects due to the perturbation in the initial density field.
- Determine under what conditions these effects may be significant or negligible.

Film effects: integral diagnostics

$$\begin{array}{c} \text{Compression: } C(t) = \frac{1}{4\pi R_0^3} \iiint_D f_1(x,y,z,t) dV \rightarrow \text{Normalization: } C_f^{\text{ID}} = \frac{V_0}{V_f} = \frac{\rho^*}{\rho_1} \quad \widetilde{C}(t) = \frac{C(t)-1}{C_f^{\text{ID}}-1} \\ \\ \text{No film model} \quad i_0^3 \int_{0}^{0} \int_{$$

Parameter study results, summarized:

- Successful Mach-number scaling and timescaling for compression.
- Scaling laws and models more elusive for circulation.
- Difficulty of correlating behavior across Atwood numbers.
- Significance of secondary effects.
- Accelerated vortical growth with modeled film material, at low Atwood number only.

Remaining tasks:

- Perform convergence study
- · Characterize turbulent features of the shock-bubble interaction
- "Tune" integral diagnostics, to achieve desired and appropriate measurement

