Computational analysis for energy accumulation and non-
axisymmetric features in a shocked spherical bubble

John Niederhaus, Jason Oakley,
Mark Anderson, Riccardo Bonazza
University of Wisconsin-Madison

bonazzalengr.wisc.edu

Jeffrey Greenough

Lawrence Livermore National Laboratory
greenoughl@llnl.gov

November 19, 2006
59t Annual Meeting of the Division of Fluid Dynamics

Tampa Bay, FL

This work is supported by DOE Grant #DE-FG52-03NA00061 Ilg



Shock-bubble interaction: overview and important physics

The shock-bubble interaction is the unsteady flow generated by the passage of a shock wave
over a discrete, round inhomogeneity in the medium of propagation.
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Computations for the shock-bubble interaction: scheme and setup

To simulate this problem in 3D, we have used the AMR code, Raptor (LLNL):

» 3D compressible Euler equations are solved, with a gamma-law EOS.

» Operator-split, piecewise-linear, second-order Godunov method (Collela, 1985) is employed.

* Integrator is embedded in the block-structured adaptive mesh refinement (AMR) framework of
Berger and Oliger (1984) and Rendleman et al. (1998)

» Scheme extended to multiple fluids by adopting the VOF method of Miller and Puckett (1996).

* Turbulence treatment is implicit: MILES (monotone-integrated large-eddy simulation).
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Parameter study:
A M
° Mechanical ShOCk Air-He 0.757 1.2,1.5,1.68
tube conditions N,-Ar 0.176 | 1.33,2.88, 3.38
° Previously Studied Air-Kr 0.486 1.2,1.5,1.68
in 2D Air-R12 0.613 1.14,2.5,5.0

Grid:

« 3D Cartesian mesh
2 levels of refinement, 4x each
Refine on|vp| and f
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 Finest level resolution: R,
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Energy accumulation in bubble: convergent vs. divergent configuration

Bubble internal E (f)= ”‘[pgz[e—%(uz 7+ WZ)]dV —> Difference between total and

energy: D', = fluid-2 mass fraction, p = total density, kinetic energy in fluid 2 at time +.

e = total energy per unit mass, [, v, w] = fluid velocity

Normalization:
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events in gas slab to find 7,/°  Oscillatory behavior of internal energy arises because of convergent geometry.

» Energy accumulation in the bubble fluid becomes non-monotonic in time for 4 >0
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Energy accumulation in bubble: convergent vs. divergent configuration
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The non-monotonic accumulation of internal energy in the bubble fluid for 4 > 0 manifests
itself in the mean density of the bubble fluid.
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Energy accumulation in bubble: non-monotonicity in time for A> 0
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Energy accumulation in bubble: non-monotonicity in time for A> 0

Non-monotonic accumulation of bubble fluid internal energy is driven by the V-V field,
which appears in the evolution equation for internal energy:

compression / expansion

0 — (departure from incompressibility)
> E (V-E)W +(p 0

t

E = internal energy per unit volume

Integrate the V- ¥ contribution over the bubble fluid volume for 4 > 0, 4 < 0 at fixed M:

Q(f)=_[jj5(g2)p (V'V)dV:O 5(g2)={1,g2210‘7

0, else

2000¢

0(n [Jfs]

-2000¢

Q@ [Js]
0(n [Jls]

-4000¢

—— Kr bubble -1.5¢

—— Krbubble ] —— Kr bubble
—— He bubble —— He bubble —— He bubble
-6000+ . . . . -2 . . . L L L -3
0 200 400 600 800 0 100 200 300 400 500 600

0 100 200 300 400 500 600
t [us]

t[ps] t[ps]

The convergent geometry associated with A > 0 introduces oscillatory behavior
into the energy accumulation, via reflected rarefactions and reflected shocks. ||__ —




Non-axisymmetric features: strong turbulence-like effects for high A > 0.2

Parameter study results indicate turbulence-like features are significant at late times for 4 > 0.2.

Vorticity
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These features cannot be described as  However, they possess many features
“turbulent”: typically attributed to turbulence:

Simulation is inviscid. Disordered/chaotic state arises,

No explicit turbulence model is in place. particularly apparent in the vorticity field.

Implicit numerical dissipation acts at Transport and mixing phenomena are

scales of A ~ 10-* m, but the physical enhanced.

dissipative scale is 7~ 105 m. A wide range of length scales is evident.

The effective Reynolds number* is low: Reynolds numbers for the viscous analog
are high:
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Univ. of Maryland, 2004.




Non-axisymmetric features: characterization using azimuthal averages

Non-axisymmetric fluctuations may be characterized by use of an azimuthal averaging scheme:
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Non-axisymmetric features: fluctuation intensity dramatically higher for [A| > 0.2 10

Non-axisymmetric fluctuations are stronger at late times for 4 > 0.2.
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Non-axisymmetric features: qualitative and spectral analysis of fluctuating fields
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Fluctuations in K and Q for the highest Atwood-number scenario: air-R12, M = 5.0 (4 = 0.613)

shock motion

r=—L u, = post-shock particle
R velocity in fluid 1




Conclusions

12
- A has been performed in 3D for the shock-bubble
interaction, including 12 realizations.
. on the resulting databases have yielded insights into the shock-induced

compression, circulation, interface distortion, and mixing phenomena.

* An has been defined for characterizing turbulence-like
features and computing statistical quantities.

By means of these tools, the study has shed light on more subtle features:

— in the bubble becomes non-monotonic in time for 4 > 0.
— Non-axisymmetric, persist at late times for 4 > 0.2.

For more flow visualizations from
these simulations, take a moment to
view video # 40 in the Gallery of
Fluid Motion, entitled “Shock-

Bubble Interaction”

R12 bubble in air
At=0.613
M=5.0




