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Shock-bubble interaction: overview and important physics

The shock-bubble interaction is the unsteady flow generated by the passage of a shock wave 
over a discrete, round inhomogeneity in the medium of propagation.

p∇

ρ∇

1
2

iW

1
2

p∇

ρ∇

Air-R12, M = 5: 3D rendering of the          field, attenuated along 
the line of sight, with isosurfaces of vorticity magnitude in red.
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Nonlinearly-coupled physical processes at work:

• Shock compression
• Nonlinear-acoustic effects
• Vorticity generation and transport

Defining parameters:
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Computations for the shock-bubble interaction: scheme and setup

To simulate this problem in 3D, we have used the AMR code, Raptor (LLNL):

• 3D compressible Euler equations are solved, with a gamma-law EOS.
• Operator-split, piecewise-linear, second-order Godunov method (Collela, 1985) is employed.
• Integrator is embedded in the block-structured adaptive mesh refinement (AMR) framework of 
Berger and Oliger (1984) and Rendleman et al. (1998)

• Scheme extended to multiple fluids by adopting the VOF method of Miller and Puckett (1996).
• Turbulence treatment is implicit: MILES (monotone-integrated large-eddy simulation).
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Initial conditions and boundary conditions: Grid:

• 3D Cartesian mesh
• 2 levels of refinement, 4× each
• Refine on       and f
• ¼ symmetry
• Finest level resolution: R128

(∆ = 198 µm)
• ~107 cells total

ρ∇

shock 
motion

O = outflow
S = symmetry

ρ∇ = density gradient  
ssmagnitude

f = bubble fluid 
sssssvolume fractionParameter study: MA

1.14, 2.5, 5.00.613Air-R12

1.2, 1.5, 1.680.486Air-Kr

1.33, 2.88, 3.380.176N2-Ar

1.2, 1.5, 1.68-0.757Air-He

Issues:

• Secondary circulation
• Energy accumulation
• Non-axisymmetric features

• Mechanical shock 
tube conditions

• Previously studied 
in 2D
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Energy accumulation in bubble: convergent vs. divergent configuration
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1 2 2 ρ →Difference between total and 

kinetic energy in fluid 2 at time t.g2 = fluid-2 mass fraction,
e = total energy per unit mass, [u, v, w] = fluid velocity

ρ = total density,

Air-He Air-Kr
A = -0.757 A = 0.486

• Energy accumulation in the bubble fluid becomes non-monotonic in time for A > 0

• Oscillatory behavior of internal energy arises because of convergent geometry.
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Normalization:

Solve 1D gasdynamics 
equations recursively for 
shock reflection/transmission 
events in gas slab to find Tf

1D

tWt /R tWi /R

Bubble internal 
energy:

M = 1.68Air-He, A Air-Kr, A = -0.757 = 0.486
max

-max

0

max

tWt /R = 1.8 tWt /R = 3.7

Wt = transmitted shock 
sssswave speedω

ρ
min

tWt /R = 2.0 tWt /R = 3.9shock motion
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Energy accumulation in bubble: convergent vs. divergent configuration
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dVfRt ρπρ →Mean density of fluid 2 at time t.Bubble mean 
density:

f2 = fluid-2 volume fraction, ρ2 = initial bubble fluid density,

Normalization:
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Solve 1D gasdynamics 
equations recursively for 
shock reflection/transmission 
events in gas slab to find ρf

1D

The non-monotonic accumulation of internal energy in the bubble fluid for A > 0 manifests 
itself in the mean density of the bubble fluid.

M = 1.68Air-He, A Air-Kr, A = -0.757 = 0.486
Wt = transmitted shock 
sssswave speed
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tWt /R = 1.8 tWt /R = 3.7

ω Wi = incident shock 
sssswave speed

ρ
min

tWi /R = 2.0 tWi /R = 3.9shock motion
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Energy accumulation in bubble: non-monotonicity in time for A > 0
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The non-monotonic 
accumulation of internal 
energy in the bubble fluid for 
A > 0 manifests itself in the 
mean density of the bubble 
fluid.
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Energy accumulation in bubble: non-monotonicity in time for A > 0

Non-monotonic accumulation of bubble fluid internal energy is driven by the         field, 
which appears in the evolution equation for internal energy:
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The convergent geometry associated with A > 0 introduces oscillatory behavior 
into the energy accumulation, via reflected rarefactions and reflected shocks.
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Non-axisymmetric features: strong turbulence-like effects for high A > 0.2

Parameter study results indicate turbulence-like features are significant at late times for A > 0.2.
Air-R12Air-KrN2-Ar

A = 0.613A = 0.486A = 0.176

M = 2.50 Density

Vorticity
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These features cannot be described as 
“turbulent”:

• Simulation is inviscid.
• No explicit turbulence model is in place.
• Implicit numerical dissipation acts at 

scales of ∆ ~ 10-4 m, but the physical 
dissipative scale is η ~ 10-6 m.

• The effective Reynolds number* is low:

However, they possess many features 
typically attributed to turbulence:

• Disordered/chaotic state arises, 
particularly apparent in the vorticity field.

• Transport and mixing phenomena are 
enhanced.

• A wide range of length scales is evident.
• Reynolds numbers for the viscous analog 

are high:
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* A.R. Miles, Ph.D. thesis, 
Univ. of Maryland, 2004.
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Non-axisymmetric features: characterization using azimuthal averages

Non-axisymmetric fluctuations may be characterized by use of an azimuthal averaging scheme:

Raw 3D dataset: ( ) ( )zrfzyxf ,,,, θ→

θ

( )zr,~2D mean field: ( )zrf ,
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Non-axisymmetric features: fluctuation intensity dramatically higher for |A| > 0.2

Non-axisymmetric fluctuations are stronger at late times for A > 0.2.
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Non-axisymmetric features: qualitative and spectral analysis of fluctuating fields

Fluctuations in K and Ω for the highest Atwood-number scenario: air-R12, M = 5.0 (A = 0.613)

τ = 15

( )zr,~Ωshock motion
τ = 15

( )zrK ,~

r

100 101 102103

104

105

106

107

τ=2
τ=4
τ=6
τ=8
τ=15
k-5/3

100 101 102109

1010

1011

1012

1013

τ=2
τ=4
τ=6
τ=8
τ=15
k-5/3

( )r
r

K kF ( )r
r kFΩ

R
ut 1′=τ 1u′ = post-shock particle  

asvelocity in fluid 1

k-5/3 k-5/3

kr [cm-1] kr [cm-1]

z
Fourier spectra of z-averaged fluctuations in K and W



12
Conclusions

• A computational parameter study has been performed in 3D for the shock-bubble 
interaction, including 12 realizations.

• Integral diagnostics on the resulting databases have yielded insights into the shock-induced 
compression, circulation, interface distortion, and mixing phenomena.  

• An azimuthal averaging scheme has been defined for characterizing turbulence-like 
features and computing statistical quantities.

• By means of these tools, the study has shed light on more subtle features:

– Energy accumulation in the bubble becomes non-monotonic in time for A > 0.
– Non-axisymmetric, turbulence-like features persist at late times for A > 0.2.
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For more flow visualizations from 
these simulations, take a moment to 
view video # 40 in the Gallery of 
Fluid Motion, entitled “Shock-
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