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In magnetized-target fusion (MTF), an imploding, conducting liner compresses a
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magnetized plasmoid, such as a spheromak or field-reversed configuration (FRC). Lagrangian approach

® Simulates plasmas in planar, cylindrical, or spherical (used here) geometries

The increasing magnetic field of the target reduces thermal conduction, and the * Lagrangian zone-radius development in time
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liner's inertia provides transient plasma stability and confinement. This poster Stngle-fluid equations of motion with pressure contributions from electrons, ions,

Lagrangian radiation hydrodynamics code, BUCKY, which solves single-fluid
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discusses work in progress on analyzing the burn dynamics of using plasma jets to S
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® FElectrons and ions assumed to have Maxwellian distributions

equations of motion with pressure contributions from electrons, ions, radiation, " l p y l p " Jons E = —— ———— : \
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BUCKY includes ion-electron interactions, PdV work, and fast-ion energy Pdcl'/onsta:t conductivities, with flux-limited electron conduction 01 — 0005 | .
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deposition. Fusion product energy deposition is modeled by localized energy

vj=398 knts; v,=100 kmés

® Fast-ion (beam or target debris) energy deposition

deposition or time-dependent particle tracking. Magnetized shock interface
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® Heating due to fast charged particles and neutrons during the fusion burn
®* D-T, D-D, and D->He reactions
® Charged particle reaction products transported and slowed using time-dependent particle

modeling will be performed in the future using Sandia National Laboratory’s 2-D
discrete simulation Monte Carlo (DSMC) code, Icarus.

* Development of region parameters in time
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Overview of Plasma-Jet Magnetized-Target Fusion Features of Sandia National Laboratory’s
- | | | 2-D DSMC Code, Icarus
® In place of the solid or liquid liner previously considered for MTF, plasma jets of
100-500 km/s would be used [1], as shown in the figure below. * Feature of most DSMC codes:
® Figure from Y.C.F. Thio, C.E. Knapp, R.C. Kirkpatrick, R.E. Siemon, and P.J. > arbitrary mean free paths, Future Work

» chemical reactions, and
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HSION BACIEY ( ) ® The Icarus code goes beyond most other DSMC codes in that it includes plasma effects: the B-field must be implemented in BUCKY.
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> arbitrary transparency,

> stationary,

® Magnetic field of the field-reversed configuration (FRC) or spheromak target > translating, and/or ®* Use BUCKY to investigate the details of plasma-jet burn dynamics.

plasmoid reduces electron thermal conductivity as the target compresses. :
> rotating.

® Shock waves propagate inward and outward, heating and compressing the plasma. ® Icarus treats x-y or r-7 geometry, using:

® Use SNL’s Icarus code to model o transport across equilibrium and stochastic
magnetic fields.

® The 1ertia of the plasma jets confines the target plasma for ~100 ns. > sophisticated grid generation,
» parallel processing,

® Optimize the performance of plasma-jet MTF plasmas in the concept-exploration,

® Typical volume compression ratios are ~1000. proof-of-principle, and reactor regimes.

. ; ; > post- ng, and
® Fuel probably D-T, but D->He is under consideration. POSTPrOCEsSIns, Ak

> restart.
® Coaxial plasma guns would be used to produce the plasma jets.
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