Fusion Space Propulsion--

A Shorter Time Frame than You Think

John F. Santarius

Fusion Technology Institute
University of Wisconsin

JANNAF Monterey, 5-8 December 2005

D-³He and Pulsed-Power Fusion Approaches Would Shorten Development Times

radioactivity, maintenance) Engineering Readiness magnets, power, (materials,

Physics Readiness

(transport, disruptions, current drive, fueling, impurities, profiles)

2

D-3He Fusion Will Provide Capabilities Not Available from Other Propulsion Options

Predicted Specific Power of D-3He Magnetic Fusion Rockets Is Attractive (>1 kW/kg)

• Predictions based on reasonably detailed magnetic fusion rocket studies.

First Author	Year	Configuration	Specific Power (kW/kg)
Borowski	1987	Spheromak	10.5
Borowski	1987	Spherical torus	5.8
Santarius	1988	Tandem mirror	1.2
Bussard	1990	Riggatron	3.9
Teller	1991	Dipole	1.0
Nakashima	1994	Field-reversed configuration	1.0
Emrich	2000	Gasdynamic mirror	130
Thio	2002	Magnetized-target fusion	50
Williams	2003	Spherical torus	8.7
Cheung	2004	Colliding-beam FRC	1.5

Fusion Propulsion Would Enable Fast and Efficient Solar-System Travel

• Fusion propulsion would dramatically reduce trip times (shown below) or increase payload fractions.

Key Fusion Fuels for Space Propulsion

1st generation fuels:

2nd generation fuel:

$$D + {}^{3}He \rightarrow p (14.68 \text{ MeV}) + {}^{4}He (3.67 \text{ MeV})$$

3rd generation fuels:

$$^{3}\text{He} + ^{3}\text{He} \rightarrow 2 \text{ p} + ^{4}\text{He} (12.86 \text{ MeV})$$

$$p + {}^{11}B \rightarrow 3 {}^{4}He (8.68 \text{ MeV})$$

D-3He Fuel Requires Continuation of the Remarkable Progress of Fusion Physics

• Decades of plasma physics progress created sophisticated tools that will facilitate the development of innovative concepts:

D-3He Fuel and High β Relax Engineering Constraints

- Reduced neutron flux allows
 - > Smaller radiation shields,
 - > Smaller magnets,
 - > Less activation,
 - > Easier maintenance, and
 - > Potentially, proliferationproof fusion power plants.
- Increased charged-particle flux allows direct energy conversion to thrust or electricity.
 - Nonlinear gain in useful power / radiator mass

$$\square$$
 $P_{thr}/M_{rad} \alpha \eta/(1-\eta)$

D-³He Fuel Could Make Good Use of the High Power Density Capability of Some Innovative Fusion Concepts

- D-T fueled innovative concepts become limited by neutron wall loads or surface heat loads well before they reach β or B-field limits.
- D-T fueled FRC's (β ~85%) optimize at B \leq 3 T.
- D- 3 He needs a factor of \sim 80 above D-T fusion power densities.
 - > Superconducting magnets can reach at least 20 T.
 - Fusion power density scales as $\beta^2 B^4$.
 - Potential power-density
 improvement by increasing
 β and B-field appears at right.

Plasma Power Flows in Linear Devices Give More Design Flexibility than Flows in Toroidal Devices

- Power density can be very high due to $\beta^2 B^4$ scaling, but first-wall heat fluxes would remain manageable.
 - > Charged-particle power transports from internal plasmoid to edge region and then out ends of fusion core.
 - > Magnetic flux tube can be "pinched" on one end by increasing the magnetic field on that side, giving primarily single-ended flow.
- Pulsed concepts gain similar advantages by reflecting plasma from a magnetic nozzle.

Low Radiation Damage in D-3He Reactors Allows Permanent First Walls and Shields to be Designed

Radioactive Waste Disposal is Much Easier for D-³He Reactors than for D-T Reactors

Fusion Rockets Would Provide Electricity Production and Materials Processing Capabilities at Destination

• Direct conversion to electricity could take advantage of the natural vacuum in space.

Barr & Moir experiment, LLNL (Fusion Technology, 1973)

• Plasmas provide many materials processing capabilities.

B.J. Eastlund and W.C. Gough, "The Fusion Torch--Closing the Cycle from Use to Reuse," WASH-1132 (US AEC, 1969).

A Well Documented Lunar ³He Resource Exists

- Lunar ³He concentration verified from Apollo 11, 12, 14, 15, 16, & 17 plus USSR Luna 16 & 20 samples.
- Analysis indicates that ~10⁹ kg of ³He exists on the lunar surface, or ~1000 y of world energy supply.
- One-way Earth-Mars trip requires ~100 kg ³He.
- 40 tonnes of ³He would supply the entire 2004 US electricity needs.
- ~400 kg ³He (8 GW-y fusion energy) is accessible on Earth for R&D.

L.J. Wittenberg, J.F. Santarius, and G.L. Kulcinski, "Lunar Source of ³He for Commercial Fusion Power," *Fusion Technology* **10**, 167 (1986).

Well-Developed Terrestrial Technology Gives Access to ~10⁹ kg of Lunar ³He

Lunar ³He Mining Produces Other Useful Volatiles

D-3He Field-Reversed Configuration (FRC) Appears Attractive for Fusion Propulsion

- FRCs possess key desired characteristics for D-3He fusion:
 - \triangleright Very high $\beta \equiv P_{plasma}/P_{B-field}$
 - > Linear external B field
 - > Cylindrical geometry

- Recent encouraging results:
 - ➤ Emerging understanding of why FRCs appear far more stable than MHD theory predicts.
 - ➤ Attractive current drive by rotating magnetic fields (RMF) demonstrated.

FRC as Power Source and Ion Engine for High Energy Space Missions

From Univ. of Washington web page for the Star Thrust Experiment (STX): www.aa.washington.edu/AERP/RPPL/STX.html

Spherical Torus Space Propulsion Would Benefit from the Substantial DOE ST Research Effort

- Very low aspect-ratio version of the tokamak.
- High β, implying high power density.

• Critical issues: recirculating power and providing thrust.

Pegasus ST experiment,
Univ. of Wisconsin

The Dipole Configuration Offers a Relatively Simple Design That an MIT/Columbia Team Has Begun Testing

lo plasma torus around Jupiter PLASMA SHEET TORUS SATELLITES INJECT IONS INTO MAGNETOSPHERE

E. Teller, A.J. Glass, T.K. Fowler, A. Hasegawa, and J.F. Santarius, "Space Propulsion by Fusion in a Magnetic Dipole," *Fusion Technology* **22**, 82 (1992).

Pulsed High Density (PHD) Fusion

- Invented by John Slough, Univ. of Washington, who provided this viewgraph.
- Experimental program that takes advantage of a very compact, high energy density FRC to reach fusion conditions.
- > The energy required to achieve fusion conditions is transferred to the FRC via simple, relatively low field acceleration/compression coils.
- > For FRC in smaller, higher density regime, the requirement on the FRC closed poloidal flux is no greater than what has been achieved
- > The FRC should remain in a stable regime with regard to MHD modes such as the tilt from formation through burn.

Flowing Liquid Metal Heat Exchanger/ Breeder

- 1 FRC formed at low energy (~3 kJ) and relatively low density (~10²¹ m⁻³)
- 2 FRC accelerated by low energy propagating magnetic field (~0.4 T) to
- 3 FRC adiabatically compressed and heated as it decelerates into burn chamber
- 4 FRC travels several meters during burn time minimizing wall loading
- 5 If necessary, FRC flux and confinement enhanced by spatial "RMF" field
- 6 FRC expands and cools converting fusion energy directly into electrical energy

It May be Possible to Efficiently Burn DD or D³He Fuels in Fast-Ignited ICF Targets

★ Four unique aspects of ICF for advanced fuels:

- (1) The required high ignition/burn temperatures (~30/150keV) can be obtained via a precursor DT ignitor region (~10/50keV).
- (2) The larger driver energies (required by the larger rho-R's for efficient advanced fuel burn-up) can be offset through fast ignition.
- (3) Bremsstrahlung is self-trapped in the compressed fuel
- (4) Tritium for the DT ignitor (~1% inventory) is self-bred as the main fuel burns
 - Viewgraph contributed by John Perkins, LLNL.

D-³He Fusion Space Propulsion Can Be Developed Quickly, *If the Will Exists*

- In parallel, experiment on several concepts with multiple devices.
 - > Winnow.
 - Provide substantial power and diagnostic capabilities.
 - > Provide sufficient contingency funding and program flexibility to director.
- Incorporate existing terrestrial fusion research program where possible.

									YΕ	AR									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
E	Proof-of-Principle Experiments (\$240 M)																		
	3 experiments																		
	3 experiments																		
	3 experiments																		
	3 experiments																		
				Ex	Integ perim		Test (\$300												
	Existing Proof-of- Principle Experiments			1 ex	perin	nent													
Princ				1 experiment															
					1 experiment														
								Burning Plasma Experiments (\$2400 M)											
								1 experiment											
								1 experiment											
								Demo (\$3500 M)											
									1 experiment										

• Total program cost ~ 6 B\$.

Summary and Conclusions

- Attractive fusion space propulsion options exist.
- Development should follow the D-³He and pulsed-power paths of more physics risk and less engineering risk.
 - > Pursue "survival of the fittest," starting with sufficient species.
 - > Provided sufficient program flexibility and contingency funds.
 - > Estimated cost < \$10 B for a demonstration system in two decades.

References

- UW Fusion Technology Institute: http://fti.neep.wisc.edu/
- J.F. Santarius, G.L. Kulcinski, L.A. El-Guebaly, and H.Y. Khater, "Could Advanced Fusion Fuels Be Used with Today's Technology?", *Journal of Fusion Energy* **17**, 33 (1998).
- J.F. Santarius and B.G. Logan, "Generic Magnetic Fusion Rocket Model," *Journal of Propulsion and Power* **14**, 519 (1998).
- J.F. Santarius, G.L. Kulcinski, and L.A. El-Guebaly, "A Passively Proliferation-Proof Fusion Power Plant," *Fusion Science and Technology* 44, 289 (2003).
- L.J. Wittenberg, J.F. Santarius, and G.L. Kulcinski, "Lunar Source of ³He for Commercial Fusion Power," *Fusion Technology* **10**, 167 (1986).
- L.J. Wittenberg, E.N. Cameron, G.L. Kulcinski, S.H. Ott, J.F. Santarius, G.I. Sviatoslavsky, I.N. Sviatoslavsky, and H.E. Thompson, "A Review of Helium-3 Resources and Acquisition for Use as Fusion Fuel," *Fusion Technology* **21**, 2230 (1992).